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Abstract: On account of the traditional multiple signal classification (MUSIC) algorithm has poor performance

in time delay estimation under the condition of small sampling data and low SNR. In this paper, the traditional

MUSIC algorithm is improved. The algorithm combines the idea of spatial smoothing, constructs a new covariance

matrix using the covariance information of the measurement data, and constructs a weighted value using the mod-

ified noise eigenvalues to weight the traditional estimation spectrum. Simulation results show that the improved

algorithm has steeper spectral peaks and better time delay resolution under the condition of inaccurate path number

estimation. The time delay estimation accuracy of this algorithm is higher than that of the traditional MUSIC al-

gorithm and the improved SSMUSIC algorithm under the conditions of small sampling data and low SNR.
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1 Introduction

The time difference of arrival (TDOA) based lo-
calization technique estimates the location of a target
by measuring the time difference of the signal arriving
at each receiver, which has the advantages of simple
architecture, high localization accuracy, and flexibility,
and is of great significance for applications in modern
electronic warfare!'. The accuracy of time delay esti-
mation directly affects the accuracy of target localiza-
tion, so accurate estimation and discrimination of the
time delay of the received signal is a key part of TDOA
localization technology. The resolution capability of
traditional time delay estimation methods based on
correlation analysis is limited by bandwidth, and the
performance deteriorates sharply in multipath envi-
ronments'?), Therefore, super-resolution multipath time
delay estimation algorithms that break the correlation
time-Riley limit are the focus of current research!®’.

Multipath time delay estimation algorithms for
super-resolution are currently classified into algo-
rithms based on maximum likelihood estimation,
subspace class algorithms and sparse optimization
class algorithms'*”). Among them, the subspace class
of multiple signal classification (MUSIC) algorithm
was proposed by Schmid™ in 1986 and was initially
used to achieve super-resolution estimation of the
Direction Of Arrival (DOA). In the literature [9] Hou
and Wu first proposed that the time delay estimation
problem can be transformed into a sinusoidal fre-
quency estimation problem. The sinusoidal frequency
estimation model is equivalent to the DOA estimation
model; therefore, the MUSIC algorithm for DOA
estimation is applicable to time delay estimation,
which effectively improves the resolution of multi-
path time delay estimation. However, the method in

[9]

the literature '™ is not effective in estimating narrow-

band signals and signals with slowly varying envelopes
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due to the inclusion of the spectral division opera-

(1 ysed the mea-

tion'”. Ge et al. in the literature
surement data correlation results to construct the co-
variance matrix to achieve super-resolution delay es-
timation for signals with slowly varying envelopes, but
the estimated spectrum constructed by this method is
still the traditional MUSIC spectrum with However,
the estimated spectrum constructed by this method is
still the traditional MUSIC spectrum, which has the
problems of ambiguity of the direct-path (DP) and
insufficient steepness of the spectral peaks. The lite-

rature 12

uses a diagonal loading method to improve
the covariance matrix, which makes the steepness of
the estimated spectrum improved. However, this me-
thod is computationally complex and has poor real-time
performance.

Improving the covariance matrix using spatial
smoothing technique can reduce the dimensionality of
the matrix calculation and make the spectral peaks
steeper. The improved SSMUSIC (Signal Subspace
Scaled Multiple Signal Classification) algorithm pro-

posed in the literature ')

uses the idea of spatial
smoothing to construct the covariance matrix and uses
the idea of SSMUSIC algorithm to weight the esti-
mated spectrum, and the estimation accuracy for nar-
rowband signals and signals with uneven spectrum
There is an improvement in the estimation accuracy for
narrowband signals and spectrally uneven signals.
However, the forward covariance matrix constructed
by this method generally fails to satisfy the Hermitian
matrix under the limited observation data. The litera-

ture ['¥

reconstructs the noise subspace to obtain a new
estimation spectrum, which improves the accuracy of
DOA estimation at low signal-to-noise ratio and small
number of fast beats, and provides ideas for improving
the weighting of the traditional estimation spectrum by
making full use of the noise subspace information in
this paper.

To address the problem that the traditional
MUSIC time delay estimation algorithm has errors in
the constructed covariance matrix due to the limited
length of data, and the poor performance of time delay

estimation under small sample conditions, this paper

proposes an improved MUSIC algorithm. The im-
proved MUSIC algorithm uses the spatial smoothing
technique to divide the measurement data into multiple
overlapping subsequences, takes the conjugate data of
each subsequence, and obtains a new covariance ma-
trix by calculation, performs eigenvalue decomposition
on the new covariance matrix to obtain the noise ei-
genvalues, and then uses the modified noise eigenva-
lues to construct weighted values to weight the tradi-
tional estimation spectrum. The improved MUSIC
algorithm effectively utilizes the covariance informa-
tion and noise eigenvalue information of measurement
data to solve the problem of poor performance of the
traditional MUSIC time delay estimation algorithm
under small sample conditions, and the simulation

verifies its effectiveness and feasibility.
2 MUSIC Time Delay Estimation Model

In the multipath environment, the received signals

of the two receivers can be expressed after sampling as

Dy

3 (n) =2 es(n=7,)+wi(n)
p n=0,1,...,N-1(1)

D,

Vs (n) = Za2is(n_r2i)+w2 (n)

i=1

Where, y;(n) and y,(n) represent the multipath
signals received by each of the two receivers, s(n)
represent the unknown source signals, wi(n) and wy(n)
represent additive Gaussian white noise. s(n), wi(n)
and w,(n) are uncorrelated. D; and D, are the number
of paths for multipath propagation. a;; and ay;
represent the random amplitudes associated with the
scattering characteristics and propagation attenuation
and are uncorrelated. 7y; and 7,; represent the time delay
of each path.

To simplify the analysis, assume that y,(n) has
only direct waves, that is, D=1, a;;=1. In the passive
time delay estimation, we focus on the relative time
delay. Suppose 7;1=0, 7,; represents the relative time
delay between the multipath component of y,(n) and
the direct wave component of y;(n). Eq. (1) can be

rewritten as
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ni(n)=s(n)+w(n)
s i%z (1) () "N )

i=1
The autocorrelation of the received signal y(n)
is
Py (M) = E[ 31 () 3y (n+m) ]
—E[s s(n+m)+w (n )wl(n-i-m)} 3)

=1, (m)+n,, (m)

Where, rg(m) and r,;,1(m) represent the auto-
correlation of s(n) and w;(n), respectively. The power
spectrum of y;(n) can be deduced from the Wien-
er-Sinchin theorem as

S, (W) =8, (W)+5,,,, (w) )

Where Si(w) and S,,,,, (w) represent the fourier
transform of r(m) and r,,,, (m), respectively.

The cross correlation between the received sig-
nals yy(n) and y,(n) is

1y, (M) = E[J’l n)y, (n+m)]

D,

=F s(n)Zazl.s(n+m—Tzl.) 5)

i=1
D,

= Z Oy (m Ty )
i=1

The cross power spectrum of the received signals
Yi(n) and y»(n) is

S (M=S. ()T ee™ ©)

Substituting Eq. (4) into Eq. (6)

Sy"'vz (W) = (S}'} » m m )z e e/

The normalized cross spectrum of received signal

is obtained by normalizing S, ,, (w) with S, , (w)

h(w) ﬁ_zazl e —g(w)  (8)

i

Where, £(w) =(S

mm ym

W)Y e

The normalized cross spectrum A(w) contains the
information of time delay and attenuation coefficient,
so the problem of time delay estimation is transformed
into the Eq. (8).

Sampling h(w) in frequency domain

27k

-,
zaZt

k=0,1,.,K-1

Use hlk] and e[k] to represent h(2zk/K) and
e(27k/K) respectively, and Eq. (9) is rewritten as

h(27k/ K) = S (

—&(27k/ K)
Sv,v,( )

©

WK=Y e+ ek k=01..K-1 (10

i=1
Write Eq. (10) in vector form
h=Aax-¢ (11)

Where, h=[h[0],A[1],...a[K-1]]",
[e[0].&[1] e[K—llT,
=ty tynttyy, |
A=[a(r),a(22),00 (220, )|

T
_ —j27r,; /K —j27r,, (K-1)/K
a(z,) —[l,e e .

Considering A[k] as the array received data in

£

DOA estimation, Eq. (10) is internally consistent with
the DOA estimation model under uniform line array
(ULA) structure, so the MUSIC algorithm in DOA
estimation can be applied to multipath time delay es-

timation.

3 Super-resolution Multipath Time Delay
Estimation

3.1 Traditional MUSIC Time Delay Estima-
tion Method

When using the traditional MUSIC algorithm to
estimate the multipath delay, first calculate the cova-
riance matrix R of the normalized cross-spectrum A,
and then perform eigenvalue decomposition on the
matrix R. The signal subspace is composed of the
eigenvectors corresponding to the top D, (In this
paper, the multipath number D, is estimated by the
minimum description length criterion)!'! largest ei-
genvalues, and the noise subspace is composed of the
remaining eigenvectors. Finally, the estimated spec-
trum is constructed using the orthogonality of the
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signal subspace and the noise subspace, and the es-
timated spectrum is searched for spectral peaks, and
the position corresponding to the peak is the estimated
time delay value.

The covariance matrix R of the normalized

cross-spectrum £ is given by

R=E[hh" = E (da+¢)(a" 4" +£") ]
= AE[ aa" | A" + E[ &£" | (12)
= APA" +o°I

Where P=E[aa"]. Assuming that the amplitude of
the attenuation coefficient of each path is constant, and
the phase follows a uniform distribution in [0:1], then P
is a non-singular matrix. Since the delay value of each
path is different, the matrix A4 is a full-rank matrix,
and R is a non-singular symmetric matrix. The ei-
genvalues of R are decomposed, the eigenvectors
corresponding to the top D, largest eigenvalues con-
stitute the signal subspace, and the remaining eigen-
vectors constitute the noise subspace. The noise

subspace is represented by U, . Since the signal

subspace and the noise subspace are orthogonal, the

vector a(ry;) falls in the

H(TZi)ﬁN =0.

signal subspace, so

Therefore, the expression of the

MUSIC time delay estimation spectrum is
1

= — 13
PMUSIC(T) H(T)UNUga(T) (13)

Perform spectral peak search on Eq. (13), and
obtain the time 7 corresponding to the top D, maximum
peak points, which is the estimated multipath time

delay value.

3.2 Improved MUSIC Time Delay Estimation
Method

In the MUSIC algorithm, the covariance matrix
needs to be calculated from the statistics of multiple
measurement data. In practical applications, the mea-
surement data value samples are limited, and the co-
variance matrix generated at this time has errors, which
leads to the phenomenon of insufficient rank in the
eigenvalue decomposition, thus making it difficult to

distinguish signal eigenvalues from noise eigenvalues

and making the performance of MUSIC algorithm
unstable. In this regard, the spatial smoothing tech-
nique can be used to improve the covariance matrix.
The basic idea of spatial smoothing technique is to
divide the main array into several overlapping
sub-arrays, and then average the covariance matrix of
the sub-arrays to solve the correlation of the signal
causing rank deficit by spatial smoothing. In this
paper, the technique is migrated to time delay esti-
mation.

In order to ensure the real-time performance of
delay estimation, it is supposed that a normalized
cross-spectral sequence of length K is obtained at
one time, and spatial smoothing is to serialize the
data into overlapping subsequences of length M, and

let

h, =[h[q).h[q+1)....h[q+M -1]]
q=0,1,..K-M

(14)

Where, the number of subsequences is K—M+1.
The mean of the covariance matrix of all subsequences
is the forward covariance matrix, and its expression is
as follows

K-M

Tk- M+1qzh

A

(15)

Under ideal conditions, the amplitude of the at-
tenuation coefficient of each path is constant, and the

phase obeys a uniform distribution in [0,2z]. At this
time, ﬁl satisfies the Hermitian matrix. However,
when the sampled data is limited, the obtained R,
generally does not satisfy this property. Therefore, a
new covariance matrix is introduced in this paper.

Take the conjugate form h; of each subsequence

data h,, and define a new data vector x,

x, =Jh, (16)

q

Where, J is the M X M order exchange matrix with

1 element on the antidiagonal and the remaining ele-

A

ments are 0. Find the mean R, of the autocorrelation

matrix of x,, and the mean R, of the cross-correlation
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matrix of &, and x,,

R=——— 3 hx" (18)

The new covariance matrix R is defined as:
R +R,+R,+JR'J
4

(19)

The new covariance matrix R effectively uti-
lizes the conjugate information of the measurement
data, satisfies JRJ = R". Its elements are conjugate
symmetric on the main diagonal'®, and it more satis-
fies the properties of Hermitian matrix. In the formula,
the value of M directly affects the spectral peak search
effect. This paper studies the effect of M on the peak to
average ratio and main lobe width of spectral peak
search through simulation experiments, and determines
the appropriate value. The experimental results and
analysis are given in 4.1.

Theoretically, when the background noise is
Gaussian white noise, the noise eigenvalues are all
equal to o”. In practice, there are errors in the generated
covariance matrix, so the noise eigenvalues obtained
from the decomposition are not exactly the same. In
this regard, this paper uses the corrected noise eigen-
values to design a weight matrix to weight the esti-
mated spectra and equalize the differences between
them.

Perform eigenvalue decomposition on the cova-

riance matrix R and arrange the resulting eigenvalues

in descending order
hZh=.ZA) Z Ay, >.>h (20
Correct the M — D, noise eigenvalues

A=A+B i=D,+1,D,+2,.M  (21)

Where, A is the corrected noise eigenvalue, and

p is the corrected value, which is used to control the

divergence degree between the noise eigenvalues.
Using 1/ /i as the weight to assign to the estimated
spectrum, the expression of the new MUSIC spectrum

is

(22)

Pousic (T) Y, 1
> Lt (o) [
i=D,+1 ﬂ,l

Where, v; is the eigenvector corresponding to the
eigenvalue 4; of the noise. Compared with Eq. (13) and
Eq. (22), Eq. (13) can be regarded as using an equal
weight matrix. When the SNR is low, the noise ei-
genvalues diverges and the gap between the noise
eigenvalues and the signal eigenvalues becomes
smaller. Eq. (22) uses the corrected noise eigenvalues
to construct a weighted value, changes the weight of
the projection component of a(z) in the noise subspace,
and equalizes the difference between the noise eigen-
values. It can reduce noise interference when parame-
ter estimation is inaccurate.

For the selection of S, the literature [17] used the
information theory criterion, and through a large
number of empirical data analysis, it was found that the
ratio of the maximum value to the minimum value of
noise eigenvalue is less than 2 when the number of
information sources can be correctly estimated. Subs-
titute the modified noise eigenvalue

ADZH +p <7

Y (23)

This paper selects the smallest f that satisfies
Eq. (23).

4 Simulations and Analysis

In this paper, the linear frequency modulation
signal is used as the transmission signal for simulation

experiments [18], and its expression is as follows

s(n)=sin((§-n+§)-n+¢0)
n=0,1 .. N-1

(24)
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Where, &=z-(f,—f1)/N, fi and f, represent the
lowest and highest frequencies of the signal, respec-
tively. (=27-f;.po represents the random initial phase

of the signal. The simulation settings f;=0.3, /=0.5.
The defined bandwidth is B, = f,—f , and the

number of multipaths D, is set to 2. The delay of

signal is 7,;=5, 75,=8, and the delay difference be-

tween the two signals is A7 =|r,, —122|=3<L )
B

which belongs to the super-resolution situation. The
number of data points N=48, the normalized
cross-spectral sequence length k=95, and the search

step length is 0.01.
4.1 Selection of Subsequence Length M

The simulation settings ay;=1, 0,,=0.8, SNR is
—8dB, subsequence length M=[fracxK], where |x |

represents downward rounding, and the ratio frac=
[0.2:0.1:0.9]. The peak-to-average ratio and main lobe
width are used to measure the peak searching effect
under different M, and 100 Monte Carlo simulation
experiments are carried out. Main lobe width is defined
as the distance between the first two points around the
peak that reach 20% of the peak height. The variation
of peak-to-average ratio and main lobe width with the
ratio of M to K are shown in Fig.1. From Fig.1a, it can

be seen that the peak-to-average ratio first increases

150

100 |

50

Peak-to-average Ratio

0 L L L L L L L
01 02 03 04 05 06 07 08 09

frac

(a)

and then decreases with the increase of frac. The
maximum value is obtained at frac=0.5. From Fig.1b, it
can be seen that the main lobe width decreases first and
then increases with the increase of frac. The minimum
value is obtained at frac=0.5. Considering compre-
hensively, frac=0.5 is selected as the length of subse-
quence in this paper. At this time, the spectral peak

search effect is better.

4.2 Normalized Spectrum Before and After

Improvement of Covariance Matrix

The simulation settings ay;=1, 0,,=0.8, and the
SNR is —8dB. Fig.2 shows the MUSIC normalized
spectrum before and after using the method in this
paper to improve the covariance matrix. Comparing
Fig.2a and Fig.2b, it can be seen that the spectral peak
of the improved MUSIC normalized spectrum is
steeper, the spectral line is smoother at the non-delay
time point, and the time delay estimation accuracy is

higher.

4.3 Normalized Spectrum Before and After
Weighting
The simulation settings a,,=0.25, a,=1, and SNR

is —11dB. At this time, the number of multipaths esti-

mated by the minimum description length criterion is 1.

Main Lobe Width

01 02 03 04 05 06 07 08 09
frac
(b)

Fig.1 Variation of Peak-to-average Ratio and Main Lobe Width with frac (a) Variation of Peak-to-average Ratio
Width with frac (b) Variation of Main Lobe Width with firac
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After improving the covariance matrix, use the weight
matrix designed in this paper to weight the MUSIC
spectrum. The effect before and after weighting is shown
in Fig.3. Comparing Fig.3a and Fig.2b, under the condi-
tion of inaccurate estimation of the number of paths, there
is only one peak in the MUSIC spectrum before weight-
ing, and the weighted MUSIC spectrum has two peaks.
The first path can be distinguished after weighting. It
shows that the weighted improvement can reduce noise
interference to some extent, and the improved MUSIC

algorithm has better time delay resolution.

1.00

095 |

o
o
S

Magnitude
o
o0
(9]

0.70 . .
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Delay
@

4.4 Performance Comparison of Three Algo-
rithms Under Different SNR

Under the condition of N=48 and SNR=—10:2:4dB,
the performance of time delay estimation of the im-
proved MUSIC algorithm is compared with that of the
traditional MUSIC algorithm and SSMUSIC algorithm.
The number of multipath D,=2 and D,=4 are consi-
dered respectively. When D,=2, the simulation settings
021=1, 131=5; 0,,=0.8, 7,,=8. When D,=4, two signals,
023=0.6, 753=11 and 0,4=0.5, 17,4,=14, are added. Conduct

1 X5.09
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Fig.2 Multipath Time Delay Estimation Based on Music Algorithm Under Small Sample Conditions Normalized Spectrum
Before and After Improvement of Covariance Matrix (a) Normalized Spectrum Before Improvement of Covariance Matrix

(b) Normalized Spectrum After Improvement of Covariance Matrix
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Fig.3 Normalized Spectrum Before and After Weighting (a) Normalized Spectrum Before Weighting

(b) Normalized Spectrum After Weighting
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100 Monte Carlo simulation experiments. The varia-
tion of root mean square error (RMSE) of the three
algorithms with SNR is shown in Fig.4. From Fig.4, it can
be seen that the time delay estimation performance of
each algorithm improves with the increase of SNR.
Compared with the improved MUSIC algorithm and
SSMUSIC algorithm, which use spatial smoothing pre-
processing technology, the performance of traditional
MUSIC algorithm is poor. The RMSE of the improved
MUSIC algorithm is smaller than that of the SSMUSIC
algorithm under different signal-to-noise ratios, when the
number of multipath is the same. In the case of D,=2 and
SNR=<-4dB, the RMSE of the improved MUSIC algo-

rithm is more than 0.01 smaller than that of the SSMUSIC
algorithm. Therefore, the time delay estimation perfor-
mance of the algorithm in this paper is superior to the
traditional MUSIC algorithm and SSMUSIC algorithm.

0.25

T T T
—oa— MUSIC(2 paths)

—A— SSMUSIC(2 paths)
—&— Improved MUSIC(2 paths)
— -©— - MUSIC(4 paths) B
— A~ - SSMUSIC(4 paths)

— — - Improved MUSIC(4 paths)

O

0.20 +

O

Fig.4 Simulation Results Under Different SNR

4.5 Performance Comparison of Three Algo-
rithms Under Different Calculation Points

Under the condition of SNR=—6dB and calculation
points N=20 : 10 : 100, the time delay estimation per-
formance of the improved MUSIC algorithm is com-
pared with that of the traditional MUSIC algorithm and
SSMUSIC algorithm. Considering the number of mul-
tipath D,=2 and D,=4 respectively, the signal delay and
attenuation coefficient are the same as 4.4. Conduct 100
Monte Carlo simulation experiments. The RMSE of the
three algorithms varies with the number of calculation
points as shown in Fig.5. From Fig.5, it can be seen that
the RMSE of the three algorithms decreases with the

increase of calculation points. The RMSE of this algo-
rithm is smaller than the traditional MUSIC algorithm
and the improved SSMUSIC algorithm under different
data points, when the number of multipath is the same.
In the case of D,=2 and N=30, the improved MUSIC

algorithm can control the RMSE within 0.1. Therefore,
the algorithm in this paper has more advantages under

the condition of small samples.

14 q : : : : : : :
\ —o— MUSIC(2 paths)

\ A SSMUSIC(2 paths)

L2+ —#— Improved MUSIC(2 paths) |
\ — -©— -MUSIC(4 paths)

1.0 N — A— -SSMUSIC(4 paths) |
: — — - Improved MUSIC(4 paths)

0.8

RMSE

0.6

0.4

4

0.2,

20 30 40 50 60 70 80 90 100
Calculation Points

Fig.5 Simulation Results Under Different
Calculation Points

5 Conclusion

This paper firstly studies the MUSIC time delay
estimation model, and applies the MUSIC algorithm in
DOA estimation to multipath time delay estimation. To
address the problem that the traditional MUSIC delay
estimation algorithm has poor performance in delay
estimation under small sample conditions, the cova-
riance matrix and estimation spectrum of the traditional
MUSIC algorithm are improved, and a super-resolution
multipath time delay estimation method based on the
improved MUSIC algorithm is proposed, and simulation
experiments are conducted. The improved MUSIC
algorithm, combined with the idea of spatial smoothing,
uses the covariance information of measurement data to
construct a new covariance matrix, and the new cova-
riance matrix better satisfies the properties of Hermitian
matrix under non-ideal conditions; the modified noise
eigenvalues are used to construct weighted values to
weight the traditional estimation spectrum, which equa-

lizes the differences between noise eigenvalues and
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reduces the noise interference. The improved algorithm
has steeper spectral peaks and better delay resolution
under the conditions of low SNR and inaccurate path
number estimation, and the performance of time delay
estimation under different SNR and different calculation
points is better than the traditional MUSIC algorithm
and the improved SSMUSIC algorithm.
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