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Abstract: On account of the traditional multiple signal classification (MUSIC) algorithm has poor performance 
in time delay estimation under the condition of small sampling data and low SNR. In this paper, the traditional 

MUSIC algorithm is improved. The algorithm combines the idea of spatial smoothing, constructs a new covariance 

matrix using the covariance information of the measurement data, and constructs a weighted value using the mod-

ified noise eigenvalues to weight the traditional estimation spectrum. Simulation results show that the improved 

algorithm has steeper spectral peaks and better time delay resolution under the condition of inaccurate path number 

estimation. The time delay estimation accuracy of this algorithm is higher than that of the traditional MUSIC al-

gorithm and the improved SSMUSIC algorithm under the conditions of small sampling data and low SNR. 
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1  Introduction 

The time difference of arrival (TDOA) based lo-
calization technique estimates the location of a target 
by measuring the time difference of the signal arriving 
at each receiver, which has the advantages of simple 
architecture, high localization accuracy, and flexibility, 
and is of great significance for applications in modern 
electronic warfare[1]. The accuracy of time delay esti-
mation directly affects the accuracy of target localiza-
tion, so accurate estimation and discrimination of the 
time delay of the received signal is a key part of TDOA 
localization technology. The resolution capability of 
traditional time delay estimation methods based on 
correlation analysis is limited by bandwidth, and the 
performance deteriorates sharply in multipath envi-
ronments[2]. Therefore, super-resolution multipath time 
delay estimation algorithms that break the correlation 
time-Riley limit are the focus of current research[3]. 

Multipath time delay estimation algorithms for 
super-resolution are currently classified into algo-
rithms based on maximum likelihood estimation, 
subspace class algorithms and sparse optimization 
class algorithms[4-7]. Among them, the subspace class 
of multiple signal classification (MUSIC) algorithm 
was proposed by Schmid[8] in 1986 and was initially 
used to achieve super-resolution estimation of the 
Direction Of Arrival (DOA). In the literature [9] Hou 
and Wu first proposed that the time delay estimation 
problem can be transformed into a sinusoidal fre-
quency estimation problem. The sinusoidal frequency 
estimation model is equivalent to the DOA estimation 
model; therefore, the MUSIC algorithm for DOA 
estimation is applicable to time delay estimation, 
which effectively improves the resolution of multi-
path time delay estimation. However, the method in 
the literature [9] is not effective in estimating narrow-
band signals and signals with slowly varying envelopes 
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due to the inclusion of the spectral division opera-
tion[10]. Ge et al. in the literature [11] used the mea-
surement data correlation results to construct the co-
variance matrix to achieve super-resolution delay es-
timation for signals with slowly varying envelopes, but 
the estimated spectrum constructed by this method is 
still the traditional MUSIC spectrum with However, 
the estimated spectrum constructed by this method is 
still the traditional MUSIC spectrum, which has the 
problems of ambiguity of the direct-path (DP) and 
insufficient steepness of the spectral peaks. The lite-
rature [12] uses a diagonal loading method to improve 
the covariance matrix, which makes the steepness of 
the estimated spectrum improved. However, this me-
thod is computationally complex and has poor real-time 
performance. 

Improving the covariance matrix using spatial 
smoothing technique can reduce the dimensionality of 
the matrix calculation and make the spectral peaks 
steeper. The improved SSMUSIC (Signal Subspace 
Scaled Multiple Signal Classification) algorithm pro-
posed in the literature [13] uses the idea of spatial 
smoothing to construct the covariance matrix and uses 
the idea of SSMUSIC algorithm to weight the esti-
mated spectrum, and the estimation accuracy for nar-
rowband signals and signals with uneven spectrum 
There is an improvement in the estimation accuracy for 
narrowband signals and spectrally uneven signals. 
However, the forward covariance matrix constructed 
by this method generally fails to satisfy the Hermitian 
matrix under the limited observation data. The litera-
ture [14] reconstructs the noise subspace to obtain a new 
estimation spectrum, which improves the accuracy of 
DOA estimation at low signal-to-noise ratio and small 
number of fast beats, and provides ideas for improving 
the weighting of the traditional estimation spectrum by 
making full use of the noise subspace information in 
this paper. 

To address the problem that the traditional 
MUSIC time delay estimation algorithm has errors in 
the constructed covariance matrix due to the limited 
length of data, and the poor performance of time delay 
estimation under small sample conditions, this paper 

proposes an improved MUSIC algorithm. The im-
proved MUSIC algorithm uses the spatial smoothing 
technique to divide the measurement data into multiple 
overlapping subsequences, takes the conjugate data of 
each subsequence, and obtains a new covariance ma-
trix by calculation, performs eigenvalue decomposition 
on the new covariance matrix to obtain the noise ei-
genvalues, and then uses the modified noise eigenva-
lues to construct weighted values to weight the tradi-
tional estimation spectrum. The improved MUSIC 
algorithm effectively utilizes the covariance informa-
tion and noise eigenvalue information of measurement 
data to solve the problem of poor performance of the 
traditional MUSIC time delay estimation algorithm 
under small sample conditions, and the simulation 
verifies its effectiveness and feasibility. 

2  MUSIC Time Delay Estimation Model 

In the multipath environment, the received signals 
of the two receivers can be expressed after sampling as 
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Where, y1(n) and y2(n) represent the multipath 
signals received by each of the two receivers, s(n) 
represent the unknown source signals, w1(n) and w2(n) 
represent additive Gaussian white noise. s(n), w1(n) 
and w2(n) are uncorrelated. D1 and D2 are the number 
of paths for multipath propagation. α1i and α2i  

represent the random amplitudes associated with the 
scattering characteristics and propagation attenuation 
and are uncorrelated. τ1i and τ2i represent the time delay 
of each path. 

To simplify the analysis, assume that y1(n) has 
only direct waves, that is, D1=1, α11=1. In the passive 
time delay estimation, we focus on the relative time 
delay. Suppose τ11=0, τ2i represents the relative time 
delay between the multipath component of y2(n) and 
the direct wave component of y1(n). Eq. (1) can be 
rewritten as 



60 CHEN Meng et al: Multipath Time Delay Estimation Based on MUSIC Algorithm Under Small Sample Conditions 
 
 
 
 
 

 

( ) ( ) ( )

( ) ( ) ( )
2

1 1

2 2 2 2
1

  0,1,..., 1D

i i
i

y n s n w n
n N

y n s n w nα τ
=

 = +
 = −

= − +



 

(2) 

The autocorrelation of the received signal y1(n) 
is 
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Where, rss(m) and rw1w1(m) represent the auto-
correlation of s(n) and w1(n), respectively. The power 
spectrum of y1(n) can be deduced from the Wien-
er-Sinchin theorem as 
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Where Sss(w) and Sw1w1
(w) represent the fourier 

transform of rss(m) and rw1w1
(m), respectively. 

The cross correlation between the received sig-
nals y1(n) and y2(n) is 
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The cross power spectrum of the received signals 
y1(n) and y2(n) is 
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Substituting Eq. (4) into Eq. (6) 
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The normalized cross spectrum of received signal 
is obtained by normalizing Sy1y2

(w) with Sy1y2
(w)  
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The normalized cross spectrum h(w) contains the 
information of time delay and attenuation coefficient, 
so the problem of time delay estimation is transformed 
into the Eq. (8). 

Sampling h(w) in frequency domain 
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Use h[k] and ε[k] to represent h(2πk/K) and 
ε(2πk/K) respectively, and Eq. (9) is rewritten as 
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Write Eq. (10) in vector form 
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Considering h[k] as the array received data in 
DOA estimation, Eq. (10) is internally consistent with 
the DOA estimation model under uniform line array 
(ULA) structure, so the MUSIC algorithm in DOA 
estimation can be applied to multipath time delay es-
timation. 

3  Super-resolution Multipath Time Delay 
Estimation 

3.1  Traditional MUSIC Time Delay Estima-
tion Method 

When using the traditional MUSIC algorithm to 
estimate the multipath delay, first calculate the cova-
riance matrix R of the normalized cross-spectrum h, 
and then perform eigenvalue decomposition on the 
matrix R. The signal subspace is composed of the 
eigenvectors corresponding to the top D2 (In this 
paper, the multipath number D2 is estimated by the 
minimum description length criterion)[15] largest ei-
genvalues, and the noise subspace is composed of the 
remaining eigenvectors. Finally, the estimated spec-
trum is constructed using the orthogonality of the 
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signal subspace and the noise subspace, and the es-
timated spectrum is searched for spectral peaks, and 
the position corresponding to the peak is the estimated 
time delay value. 

The covariance matrix R of the normalized 
cross-spectrum h is given by 

 

( )( )H H H H

H H H

H 2

E E

E E

σ

  = =   
   = +   

= +

R hh Aα A

A A

APA I

ε α ε

αα εε

+ +

  (12) 

Where P=E[ααH]. Assuming that the amplitude of 
the attenuation coefficient of each path is constant, and 
the phase follows a uniform distribution in [0:1], then P 
is a non-singular matrix. Since the delay value of each 
path is different, the matrix A is a full-rank matrix, 
and R is a non-singular symmetric matrix. The ei-
genvalues of R are decomposed, the eigenvectors 
corresponding to the top D2 largest eigenvalues con-
stitute the signal subspace, and the remaining eigen-
vectors constitute the noise subspace. The noise 
subspace is represented by ˆ

NU . Since the signal 

subspace and the noise subspace are orthogonal, the 
vector a(τ2i) falls in the signal subspace, so 

( )H
2

ˆa 0i Nτ =U . Therefore, the expression of the 

MUSIC time delay estimation spectrum is 
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Perform spectral peak search on Eq. (13), and 
obtain the time τ corresponding to the top D2 maximum 
peak points, which is the estimated multipath time 
delay value. 

3.2  Improved MUSIC Time Delay Estimation 
Method 

In the MUSIC algorithm, the covariance matrix 
needs to be calculated from the statistics of multiple 
measurement data. In practical applications, the mea-
surement data value samples are limited, and the co-
variance matrix generated at this time has errors, which 
leads to the phenomenon of insufficient rank in the 
eigenvalue decomposition, thus making it difficult to 
distinguish signal eigenvalues from noise eigenvalues 

and making the performance of MUSIC algorithm 
unstable. In this regard, the spatial smoothing tech-
nique can be used to improve the covariance matrix. 
The basic idea of spatial smoothing technique is to 
divide the main array into several overlapping 
sub-arrays, and then average the covariance matrix of 
the sub-arrays to solve the correlation of the signal 
causing rank deficit by spatial smoothing. In this 
paper, the technique is migrated to time delay esti-
mation.  

In order to ensure the real-time performance of 
delay estimation, it is supposed that a normalized 
cross-spectral sequence of length K is obtained at 
one time, and spatial smoothing is to serialize the 
data into overlapping subsequences of length M, and 
let  
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Where, the number of subsequences is K‒M+1. 
The mean of the covariance matrix of all subsequences 
is the forward covariance matrix, and its expression is 
as follows 
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Under ideal conditions, the amplitude of the at-
tenuation coefficient of each path is constant, and the 
phase obeys a uniform distribution in [0,2π]. At this 

time, 1R̂  satisfies the Hermitian matrix. However, 

when the sampled data is limited, the obtained 1R̂  

generally does not satisfy this property. Therefore, a 
new covariance matrix is introduced in this paper. 

Take the conjugate form *
qh  of each subsequence 

data hq, and define a new data vector xq 

  *
q q=x Jh                  (16) 

Where, J is the M×M order exchange matrix with 
1 element on the antidiagonal and the remaining ele-

ments are 0. Find the mean 2R̂  of the autocorrelation 

matrix of xq, and the mean 3R̂  of the cross-correlation 
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matrix of hq and xq 
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The new covariance matrix R is defined as: 

 

*
1 2 3 3
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4
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The new covariance matrix R̂  effectively uti-
lizes the conjugate information of the measurement 

data, satisfies *ˆ ˆ=JRJ R . Its elements are conjugate 
symmetric on the main diagonal[16], and it more satis-
fies the properties of Hermitian matrix. In the formula, 
the value of M directly affects the spectral peak search 
effect. This paper studies the effect of M on the peak to 
average ratio and main lobe width of spectral peak 
search through simulation experiments, and determines 
the appropriate value. The experimental results and 
analysis are given in 4.1. 

Theoretically, when the background noise is 
Gaussian white noise, the noise eigenvalues are all 
equal to σ2. In practice, there are errors in the generated 
covariance matrix, so the noise eigenvalues obtained 
from the decomposition are not exactly the same. In 
this regard, this paper uses the corrected noise eigen-
values to design a weight matrix to weight the esti-
mated spectra and equalize the differences between 
them. 

Perform eigenvalue decomposition on the cova-

riance matrix R̂  and arrange the resulting eigenvalues 
in descending order 

 2 21 2 1
ˆ ˆ ˆ ˆ ˆ... ...≥ ≥ ≥ ≥λ λ λ λ λ+ > >D D M     (20) 

Correct the 2M D−  noise eigenvalues 

 2 2    1, 2,...i i i D D Mλ λ β= + = + +     (21) 

Where, iλ  is the corrected noise eigenvalue, and 

β is the corrected value, which is used to control the 
divergence degree between the noise eigenvalues. 

Using 1/ iλ  as the weight to assign to the estimated 

spectrum, the expression of the new MUSIC spectrum 
is  
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Where, vi is the eigenvector corresponding to the 
eigenvalue λi of the noise. Compared with Eq. (13) and 
Eq. (22), Eq. (13) can be regarded as using an equal 
weight matrix. When the SNR is low, the noise ei-
genvalues diverges and the gap between the noise 
eigenvalues and the signal eigenvalues becomes 
smaller. Eq. (22) uses the corrected noise eigenvalues 
to construct a weighted value, changes the weight of 
the projection component of a(τ) in the noise subspace, 
and equalizes the difference between the noise eigen-
values. It can reduce noise interference when parame-
ter estimation is inaccurate. 

For the selection of β, the literature [17] used the 
information theory criterion, and through a large 
number of empirical data analysis, it was found that the 
ratio of the maximum value to the minimum value of 
noise eigenvalue is less than 2 when the number of 
information sources can be correctly estimated. Subs-
titute the modified noise eigenvalue 

 

2 1 2≤
λ β
λ β

+ +
+

D

M

               (23) 

This paper selects the smallest β that satisfies 
Eq. (23). 

4  Simulations and Analysis 

In this paper, the linear frequency modulation 
signal is used as the transmission signal for simulation 
experiments [18], and its expression is as follows 

( ) ( )( )0sin    
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s n n n

n N
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= −
      (24) 
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Where, ξ=π·(f2‒f1)/N, f1 and f2 represent the 
lowest and highest frequencies of the signal, respec-
tively. ζ=2π·f1.φ0 represents the random initial phase 
of the signal. The simulation settings f1=0.3, f2=0.5. 
The defined bandwidth is 2 1sB f f− , and the 

number of multipaths 2D  is set to 2. The delay of 

signal is τ21=5, τ22=8, and the delay difference be-

tween the two signals is 21 22
13

sB
τ τ τΔ = − = < , 

which belongs to the super-resolution situation. The 
number of data points N=48, the normalized 
cross-spectral sequence length K=95, and the search 
step length is 0.01. 

4.1  Selection of Subsequence Length M 

The simulation settings α21=1, α22=0.8, SNR is 
‒8dB, subsequence length M=[frac×K], where x    

represents downward rounding, and the ratio frac= 
[0.2:0.1:0.9]. The peak-to-average ratio and main lobe 
width are used to measure the peak searching effect 
under different M, and 100 Monte Carlo simulation 
experiments are carried out. Main lobe width is defined 
as the distance between the first two points around the 
peak that reach 20% of the peak height. The variation 
of peak-to-average ratio and main lobe width with the 
ratio of M to K are shown in Fig.1. From Fig.1a, it can 
be seen that the peak-to-average ratio first increases 

and then decreases with the increase of frac. The 
maximum value is obtained at frac=0.5. From Fig.1b, it 
can be seen that the main lobe width decreases first and 
then increases with the increase of frac. The minimum 
value is obtained at frac=0.5. Considering compre-
hensively, frac=0.5 is selected as the length of subse-
quence in this paper. At this time, the spectral peak 
search effect is better. 

4.2  Normalized Spectrum Before and After 
Improvement of Covariance Matrix 

The simulation settings α21=1, α22=0.8, and the 
SNR is ‒8dB. Fig.2 shows the MUSIC normalized 
spectrum before and after using the method in this 
paper to improve the covariance matrix. Comparing 
Fig.2a and Fig.2b, it can be seen that the spectral peak 
of the improved MUSIC normalized spectrum is 
steeper, the spectral line is smoother at the non-delay 
time point, and the time delay estimation accuracy is 
higher. 

4.3  Normalized Spectrum Before and After 
Weighting 

The simulation settings α21=0.25, α22=1, and SNR 
is ‒11dB. At this time, the number of multipaths esti-
mated by the minimum description length criterion is 1. 

 

 
 

Fig.1  Variation of Peak-to-average Ratio and Main Lobe Width with frac (a) Variation of Peak-to-average Ratio  
Width with frac (b) Variation of Main Lobe Width with frac 
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After improving the covariance matrix, use the weight 
matrix designed in this paper to weight the MUSIC 
spectrum. The effect before and after weighting is shown 
in Fig.3. Comparing Fig.3a and Fig.2b, under the condi-
tion of inaccurate estimation of the number of paths, there 
is only one peak in the MUSIC spectrum before weight-
ing, and the weighted MUSIC spectrum has two peaks. 
The first path can be distinguished after weighting. It 
shows that the weighted improvement can reduce noise 
interference to some extent, and the improved MUSIC 
algorithm has better time delay resolution. 

4.4  Performance Comparison of Three Algo-
rithms Under Different SNR 

Under the condition of N=48 and SNR=‒10:2:4dB, 
the performance of time delay estimation of the im-
proved MUSIC algorithm is compared with that of the 
traditional MUSIC algorithm and SSMUSIC algorithm. 
The number of multipath D2=2 and D2=4 are consi-
dered respectively. When D2=2, the simulation settings 
α21=1, τ21=5; α22=0.8, τ22=8. When D2=4, two signals, 
α23=0.6, τ23=11 and α24=0.5, τ24=14, are added. Conduct 

 
 

 
 
 

Fig.2  Multipath Time Delay Estimation Based on Music Algorithm Under Small Sample Conditions Normalized Spectrum 
Before and After Improvement of Covariance Matrix (a) Normalized Spectrum Before Improvement of Covariance Matrix 

(b) Normalized Spectrum After Improvement of Covariance Matrix 
 
 

 
 
 

 
 
 

Fig.3  Normalized Spectrum Before and After Weighting (a) Normalized Spectrum Before Weighting  
(b) Normalized Spectrum After Weighting 
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100 Monte Carlo simulation experiments. The varia-
tion of root mean square error (RMSE) of the three 
algorithms with SNR is shown in Fig.4. From Fig.4, it can 
be seen that the time delay estimation performance of 
each algorithm improves with the increase of SNR. 
Compared with the improved MUSIC algorithm and 
SSMUSIC algorithm, which use spatial smoothing pre-
processing technology, the performance of traditional 
MUSIC algorithm is poor. The RMSE of the improved 
MUSIC algorithm is smaller than that of the SSMUSIC 
algorithm under different signal-to-noise ratios, when the 
number of multipath is the same. In the case of D2=2 and 
SNR≤‒4dB, the RMSE of the improved MUSIC algo-

rithm is more than 0.01 smaller than that of the SSMUSIC 
algorithm. Therefore, the time delay estimation perfor-
mance of the algorithm in this paper is superior to the 
traditional MUSIC algorithm and SSMUSIC algorithm. 

 

 
 

Fig.4  Simulation Results Under Different SNR 
 

4.5  Performance Comparison of Three Algo-
rithms Under Different Calculation Points 

Under the condition of SNR=‒6dB and calculation 
points N=20 : 10 : 100, the time delay estimation per-
formance of the improved MUSIC algorithm is com-
pared with that of the traditional MUSIC algorithm and 
SSMUSIC algorithm. Considering the number of mul-
tipath D2=2 and D2=4 respectively, the signal delay and 
attenuation coefficient are the same as 4.4. Conduct 100 
Monte Carlo simulation experiments. The RMSE of the 
three algorithms varies with the number of calculation 
points as shown in Fig.5. From Fig.5, it can be seen that 
the RMSE of the three algorithms decreases with the 

increase of calculation points. The RMSE of this algo-
rithm is smaller than the traditional MUSIC algorithm 
and the improved SSMUSIC algorithm under different 
data points, when the number of multipath is the same. 
In the case of D2=2 and N≥30, the improved MUSIC 

algorithm can control the RMSE within 0.1. Therefore, 
the algorithm in this paper has more advantages under 
the condition of small samples. 

 

 
 

Fig.5  Simulation Results Under Different  
Calculation Points 

 

5  Conclusion 

This paper firstly studies the MUSIC time delay 
estimation model, and applies the MUSIC algorithm in 
DOA estimation to multipath time delay estimation. To 
address the problem that the traditional MUSIC delay 
estimation algorithm has poor performance in delay 
estimation under small sample conditions, the cova-
riance matrix and estimation spectrum of the traditional 
MUSIC algorithm are improved, and a super-resolution 
multipath time delay estimation method based on the 
improved MUSIC algorithm is proposed, and simulation 
experiments are conducted.  The improved MUSIC 
algorithm, combined with the idea of spatial smoothing, 
uses the covariance information of measurement data to 
construct a new covariance matrix, and the new cova-
riance matrix better satisfies the properties of Hermitian 
matrix under non-ideal conditions; the modified noise 
eigenvalues are used to construct weighted values to 
weight the traditional estimation spectrum, which equa-
lizes the differences between noise eigenvalues and 
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