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Data-driven prognostics and remaining useful life
estimation for lithium-ion battery: A Review "

LIU Datong, ZHOU Jianbao, PENG Yu"
( Department of Automatic Test and Control, Harbin Institute of Technology, Harbin 150080, China)

Abstract; As an important and necessary part in the intelligent battery management systems (BMS) , the prognostics and remai-
ning useful life (RUL) estimation for lithium-ion batteries attach more and more attractions. Especially, the data-driven approa-
ches use only the monitoring data and historical data to model the performance degradation and assess the health status, that
makes these methods flexible and applicable in actual lithium-ion battery applications. At first, the related concepts and definitions
are introduced. And the degradation parameters identification and extraction is presented, as the health indicator and the founda-
tion of RUL prediction for the lithium-ion batteries. Then, data-driven methods used for lithium-ion battery RUL estimation are
summarized, in which several statistical and machine learning algorithms are involved. Finally, the future trend for battery prog-
nostics and RUL estimation are forecasted.
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1 Introduction teries have become the hottest issues but the most
. o challenging issues in the fields of power system, re-
The rapid advances of lithium-ion battery tech- o . . . .
. . ) liability engineering, system engineering, aerospace
nologies have made them widely used in almost all L o
) o ) ) ) ) applications, etc. Accurate RUL prediction can help
of industrial fields, including electric vehicles, con- . o L
) T o the maintenance schedule and optimize the repairs in
sumer electronics, communications, aviation, space- . )
advance and provide an alarm before degradation or
crafts and so on. Compared with traditional NiMH . o o .
failure reaches critical level. As a result, this intelli-

and NiCd battery, the lithium-ion battery has the ad- . .
gent function can prevent malfunction and -cata-

vantages of high output voltage, high energy densi- strophic failures of battery systems. In the intelligent

ty, low self-discharge rate, long cycle life, high re-

e battery management system (BMS) , the prognostics

liability and safety and RUL estimation is essential to meet the require-

Due to the importance of the lithium-ion batter- ments on life extension, reliability testing and condi-

ies in various systems, a lot of fatal failures of com-
plex systems are attributed to their battery sub-sys-

tems ">

, thus, the reliability of lithium-ion batteries
has attracted much attention of the electronics indus-
try. With the challenges of safety management,
charge and discharge control, and performance deg-
radation, diagnostics and prognostics and remaining

useful life (RUL) estimation for the lithium-ion bat-

tion-based maintenance. In particular, lifetime tests
and data modeling and analyzing should be carefully
addressed for reliability evaluation and system main-
tenance.

In this area, the methods for battery RUL esti-
mation can be generally classified into two catego-
ries: model-based and data-driven approaches'”” .

Model-based method requests the mathematical ex-
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pressions or the mapping of the system and the phys-
ical model. The advantage of model-based method
lies in that it can obtain high performance for a more
accurate RUL estimation. But model-based methods
require the precise description of the electrochemical
degradation process with the mathematical or physi-
cal or other models. At the same time, as a complex
electrochemical system, it is very difficult to obtain
a flexible and accurate model, or sometimes, it is
hard to identify the applicable parameters for some
existing models"*.

Compared with the model-based approach, the
data-driven method only depends on the monitoring
data and historical data, to realize degradation analy-
sis and heath status assessment'’’. In recent years,
the data-driven algorithm has become the mainstream
of the RUL estimation. Many data-driven algorithms
have been reported to estimate the RUL for the lithi-
um-ion batteries. The key of data-driven algorithms
is to establish a correlation model between the condi-
tioned monitoring data and the expected RUL value.
Although the data-driven methods obtain great suc-
cess and apply widely in industrial applications, the
prognostic process with data-driven method is usual-
ly opaque and such models are often invisible to the
users. Due to the complex relationship between the
state monitoring data and the system RUL, the RUL
estimation still remains a challenging.

With the ahead mentioned development in data-
driven approaches for the degradation modeling and
RUL prediction of lithium-ion batteries, this paper
focuses the status and advances in this area. The rest
of this paper is organized as follows: in Section 2,
the related definitions and concepts of health status
and performance degradation for lithium-ion battery
are introduced. Then, Section 3 mainly describes the
methods for identifying and modeling the lithium-ion
battery degradation. The widely applied data-driven
approaches for lithium-ion batteries RUL estimation
are analyzed and discussed in Section 4. Finally,
Section 5 summaries the main challenges and future

perspective.

2 Related definitions and concepts

Before we summarize the data-driven methods
for battery RUL prediction, the related concepts and
definitions are addressed at first.

1) Capacity; to indicate the capability of power
storage and is measured in unit of amp-hour ( Ah).

2) Rated capacity : to refer to the obtained ca-
pacity discharged to cut-off voltage at a constant cur-
rent (discharged rate typically equals to 0.2C speci-
fied by the manufacturer) .

3) Actual capacity: to refer to the maximum
discharged capacity to fully discharge under certain
conditions. It should be emphasized that the battery
capacity and the remaining power is different.

4) Electrochemical Impedance Spectroscopy
(EIS) . is the response of a lithium-ion battery to
AC signals of different frequencies, which can be
obtained by applying the signals to a real electric cir-
cuit known as equivalent circuit constructed from cir-
cuit elements such as resistors and capacitors ", The
ratio of AC voltage and current (regarded as the sys-
tem impedance) changes with the different frequen-
cy w, as a result, the Nyquist curve of the impend-
ence can be obtained. By checking the Nyquist
curve, we may analyze the influence on parameters
of solution resistance, charge-transfer resistance and
Warburg impedance with the cycle number.

5) Charge/discharge cycle: a charge/discharge
cycle means charging and discharging for one time to
the storage battery.

6) State of charge (SOC) : is the equivalent of
a fuel gauge for the battery pack, and the SOC are
percentage points (0% = empty; 100% = full).

7) Depth of discharge (DOD) : is an alternate
method to indicate a battery’s SOC. The DOD is the
complement of SOC, and the units for DOD can be
Ah or percent points (100% = empty; 0% = full).

8) State of health (SOH) : to indicate the con-

dition of a battery compared to its ideal condi-
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tions! "’

The units of SOH are percent points
(100% = the battery’s conditions match the battery’s
specifications) . Typically, a battery 's SOH will be
100% at the time of manufacture and will degrade o-
ver time and usage.

9) Degradation; to indicate the process from
health status to performance decrease until functional
failure.

10) Health Indicator ( HI): to evaluate the
health status of a lithium-ion battery and represent
the health level of the fade status and level .

11) Degradation state identification: to map the
different parameters or variables into the health indi-
cator, in order to determine the current health status
of the lithium-ion battery.

12) Failure threshold: to define the battery “s
performance or health status which can not continue
to maintain the objective systems or equipments to
work as the failure threshold. Generally, we define
about 70% to 80% of the rated capacity as the failure
threshold for lithium-ion battery, that may vary for
different requirements and applications' "'

13) Life. includes three categories, that are
storage life, usage life and cycle life. Storage life re-
fers to the experienced time degraded to a certain de-
gree for the battery performance in shelving/storage
conditions. Usage life refers to the time period fading
to the failure threshold under certain charge and dis-
charge conditions. In actual applications, we usually
apply cycle life to describe the life characteristics,
that is, the charge and discharge cycles degraded to
the failure threshold under certain charge and dis-
charge conditions.

Therefore, the remaining use life referred to in
this article is the remaining cycle life of the lithium-
ion battery, which is the experienced cycles from
this moment until the lithium-ion battery capacity
cannot sustain the device working properly.

Figure 1 shows the degradation modeling and

RUL estimation for a lithium-ion battery.

prediction

A degradation

Health indicator

»
\

Charging and discharging cycles

Fig. 1 Diagram of remaining useful life prediction for

lithium-ion battery

3 Degradation identification for lithium-
ion battery

The degradation state identification is the basis
for RUL estimation, in which the health indicator is
extracted and identified, used as the indicator to re-

present the RUL value.
3.1 Degradation parameters

Lithium-ion batteries store and release energy
by the inside chemical reaction. With the evolvement
of chemical reaction in actual applications, a series
of aging phenomenon occurs in the internal lithium-
ion battery, leading to gradually fading of their
health status. The typical characteristics of perform-
ance degradation exhibit as the capacity fading or
impedance increasing. Thus, the capacity and inter-
nal impedance is often adopted as the indicating pa-
rameters to assess the performance degradation of a
lithium-ion battery.

1) Capacity

Nowadays, the battery capacity is always used
for representing the health status, and the health sta-
tus indicating with the capacity can be described
as™™ |

Capacity (k)
:Capacity(O)

where Capacity(0) is the initial capacity or ra-

SOH x100% (1)

ted capacity (Ah), Capacity(k) is the actual capac-
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ity in the k™ cycle (Ah).

As the internal parameter, the battery capacity
can not be measured directly, generally calculated
with ampere-hour (ah, amp-hr) method''". The
amp-hr method estimates the battery capacity by ac-
cumulating the discharging current, in which the
lithium-ion battery is charged and discharged thor-
oughly under particular working conditions for the
life test. However, this method is very time consu-
ming for capacity estimation, at the same time, the
life test in the laboratory experimental conditions is
hard to cover all of the practical complex operating
conditions. Moreover, in actual industrial applica-
tion, the lithium ion battery is not working with fully
charge and discharge. As a result, the amp-hr meth-
od is not so applicable and flexible.

2) Impedance

Currently, many scholars focus the battery
health status in the view of impedance increasing,
that includes AC impedance (referred to as imped-
ance) and ohmic resistance ( referred to as resist-
ance) .

It is reported that the lithium-ion battery capaci-
ty degradation is mainly caused by the increasing of
AC impedance. Therefore, the impedance can de-
scribe lithium-ion battery health state, and it is
proved that a linear relationship exists between the
impedance and the capacity!"”’. Thus, the lithium-
ion battery capacity measurements can be converted
to the measurement of battery impedance.

The key issue is how to obtain the impedance of
lithium-ion battery while using impedance to de-
scribe the health status. Currently, the most com-
monly used approach to measure the battery imped-

t''°’. Saha et al. obtained imped-

ance is the EIS tes
ance of lithium-ion batteries through EIS, and mod-
eled the correlation relationship between impedance
and capacity using support vector regression method.
Based on the impedance, the SOH can be defined
with power as,

Power (k)

SOH=(1——=
( Power(0)

)Y x100% (2)

where Power (0) is the initial power or rated
power (W), and Power (k) is the available power
after the k" charging and discharging (W).

Gomez et al.'"

pointed out that the equivalent
circuit model parameters EIS contains important bat-
tery information. Lee et al.'"’ introduced that EIS
test results can be used to estimate the battery capaci-
ty loss. Ran et al.'™' considered that the cell aging
mechanisms can be studied through EIS. Kozlows-
ki'®" achieved impedance spectroscopy using sinu-
soidal signal scanning methods based on second-or-
der battery model, and integrated ANN, ARMA and
fuzzy logic approach to assess the battery SOH.

The advantage of EIS method is that it can ac-
curately obtain the impedance of the battery > .
However, this method is a typical off-line method,
and the EIS measurement is complex and time-con-
suming, which requires specialized testing instru-
ments. To apply the EIS technology for on-line mo-
nitoring of battery status, is still a challenge and nee-
ded further study.

To overcome the difficulty for the EIS measure-
ment, some researchers studied the correlation rela-
tionship between capacity and the ohmic resistance
of lithium-ion battery, and proposed the SOH defini-

tion with ohmic resistance,

R.» -R

SOH=—""" x100% (3)
EOL ™ new

where R, is the initial resistance, and R, is

the resistance of end-of-life, and R is the current re-
sistance.

Ohmic resistance measurement is generally con-
ducted as follows. A smaller load is adding into the
circuit, and the change of the voltage for the load
can determine the change of the internal resistance of
the lithium-ion battery. The SOH is then calculated
according to Eq. (3). Meanwhile, the battery ohmic
resistance measurement requires that the battery is at
it static status and with no connection with outside
circuit. Moreover, the value of ohmic is very small
which is typically milliohm, that make it hard to ac-

curately measure. Therefore, Dai et al.'*! obtained
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the relationship of battery resistance and cycle num-
bers under different DODs, discharging rates, oper-
ating temperatures for lithium-ion batteries with the
accelerated aging test. A function is established be-
tween the internal resistance and the battery model
parameters, open circuit voltage of the battery. By
using Dual EKF ( Dual Extended Kalman Filter,
DEKF) method, the battery resistance is estimated.
But the disadvantage of this method is that the meas-
urement of open circuit voltage of the battery must
take a long static period of time (usually several
hours) , which limits its practical applications. Hu et
al.”" proposed a multi-scale EKF algorithm to a-
chieve an accurate estimate of the battery SOC and
capacity, which is more effective and accurate than
the DEKF and Joint EKF. Liu'*' Combined the in-
ternal resistance and SOC, the SOH is predicted in
real time via internal resistance estimation with the e-
duced-order DEKF method, in which the main

drawback is that accurate SOC estimator is needed.
3.2 Degradation idetification methods

1) Direct degradation identification methods

As mentioned above, we can obtain the degra-
dation parameters, such as battery capacity, internal
impedance, by direct test or measurement, which is
called direct degradation identification method in this
paper.

The advantage for these methods is that precise
degradation parameters for health status assessment
can be obtained. On the other hand, these parame-
ters are all internal parameters inside the lithium-ion
batteries, which can only be measured or estimated
in certain experimental test in an off-line way. More-
over, the test is time-consuming, complicated, and
high cost, that is not suitable for on-line applica-
tions.

2) Indirect degradation identification methods

To solve the difficulty in the test of battery ca-
pacity and internal resistance, some researchers ex-
tract and identify degradation parameters with availa-

ble monitoring parameters. These degradation param-

eters can approximate the battery capacity or internal
resistance for degradation modeling. Compared to the
direct degradation identification methods, these
methods to extract and identify the health indicators
can be called indirect degradation identification
method.

In actual applications, the available monitoring
parameters include charging and discharging voltage,
current, time intervals, temperature, etc. Widodo et
al.'™ presented an intelligent prognostic framework
for battery health assessment based on sample entro-
py ( SampEn) feature of discharge voltage. The
SampEn time series are extracted and used as health
indicators. Then, the
(SVM) and relevance vector machine ( RVM )

methods are utilized to estimate the SOH. Liu et

support vector machine

al.'*" analyzed the characteristics of discharging
voltage during the degradation process for lithium-
ion batteries, and proposed a novel health indicator
for battery cycle life assessment. The grey correlation
analysis is applied to evaluate the efficiency for time
interval to equal discharging voltage difference
(TIEDVD) series, which proved high similarity ex-
ists between the TIEDVD series and battery capacity
series.

The degradation identification has great impact
on the performance of RUL estimation for lithium-
ion batteries. In this field, insufficient efforts have
been made to extract and identify available and flexi-
ble and applicable degradation parameters for battery

health assessment.

4 Data-driven approaches for remaining
useful life estimation

4.1 Data-driven methods

Data-driven methods use the historical data or
monitoring data to train prediction model, with
which the RUL can be estimated. The main advan-
tage of the data-driven method is that the modeling
do not needed to consider the complex battery mech-
anism, which make it widely used and rapidly devel-

oped.
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The data-driven methods include AutoRegres-
sive ( AR) model, Artificial Neural Networks
( ANNs ),
(GPR), RVM, etc. we will briefly introduce these

widely used data-driven methods for lithium-ion bat-

SVM, Gaussian Process Regression

tery RUL estimation. One thing needed to be empha-
sized is that, in this paper, the statistical filter algo-
rithms such as particle filter (PF), Kalman Filter
(KF) are not involved.

1) AR model

A series of time series prediction models inclu-
ding AR, Moving Average (MA), AutoRegressive
and Moving Average ( ARMA) and their nonlinear
improved models, e.g. AutoRegressive Conditional
Heteroscedastic ( ARCH) , Generalized AutoRegres-
sive Conditional ( GARCH ),
Threshold AutoRegressive ( TAR), etc.'*’. These

AR series models predict the future state based on

Heterosecdastic

several past system states. In general, the ARMA
model and MA model can be approximated with high
order AR model, and the parameters identification
for AR model is flexible and of high real time per-
formance'*" .

Saha er al."™' used ARMA algorithm to model
battery internal parameters and capacity, and the
prediction is realized with extrapolation. To improve
the nonlinear prediction capability of ARMA model

for battery RUL estimation, Liu et al.'®*"

proposed
an improved Nonlinear Degradation AR ( ND-AR)
model to track the accelerated factor, considering
that the battery capacity degradation exhibits an ac-
celeration phenomenon after the medium lifetime.
I"adopted AR model to track the bat-

tery capacity degradation, in which the particle

32

Long et al.'

swarm optimization ( PSO) algorithm is used to de-
termine the order of the AR model, and a new error
criteron is applied for AR model order determina-
tion.

The AR model is simple and flexible to use
whose computation complexity is low. But these
models lack of uncertainty representation and may

not be suitable for complicated prediction.

2) ANN

The ANN algorithms are the most widely used
prediction methods. Jon et al.'"™ proposed a Double-
Sigmoid Model (DSM) based on ANN to realize the
cycle life prediction for lithium-ion battery. It is
proved that the DSM can precisely estimate the re-
maining cycle life until the 50% performance degra-
dation. Liu et al."*™ presented an Adaptive Recurrent
Neural Network ( ARNN) algorithm for state predic-
tion of dynamic system. The ARNN algorithm uses
the Recurrent Levenberg-Marquardt (RLM) method
to adjust the weights of RNN architecture, and ob-
tained satisfied results in the lithium-ion battery RUL
estimation. Andre et al.*"
Neural Network ( SNN) algorithm with prior knowl-

proposed a Structured

edge, to describe the mathematical function of bat-
tery voltage, current and resistance with the equiva-
lent circuit. In SNN, the temperature, current and
SOC are used as inputs and voltage is used as out-
put, as a result, the interval resistance can be esti-
mated to obtain the remaining cycle life for lithium-
ion battery. Parthiban et al.'*! applied the ANN
model to achieve life degradation prediction, in
which the charging and discharging cycles are as in-
puts and the capacity is as output. The ANN archi-
tecture is that one input layer with one neuron corre-
sponding to one input variable, and a hidden layer
consisting of three neurons to generate their outputs
to the output layer through a sigmoid function, and
the output layer consists of two neurons, represen-
ting the charge and discharge capacity, whose acti-
vation function is also the sigmoid transfer function.

The traditional ANN mainly has two drawbacks
that limit its applications, that are the network struc-
ture is complex and all the weights of ANN must be
trained ; and the training may lead to over-fitting and
high computation.

3) SYM

On the basis of VC-dimension theory, the SVM
can get global minimum using structural risk minimi-
zation as the optimal criterion. Especially, the SVR

is suitable for the modeling of small samples. Rufus
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et al.l*

! proposed a lithium-ion battery diagnostic
and prognostic framework for space applications, u-
sing SVM for battery failure detection. At the same
time, the Dynamic Neural Network ( DNN) is uti-
lized to explain the degradation process and estimate
the RUL of lithium-ion batteries. Widodo et al.'*’
compared the SVM and RVM for battery RUL pre-
diction with a new health indicator. Pattipati et al."""’
proposed a BMS that estimates three critical charac-
teristics of the battery (SOC, SOH, and RUL) with
a data-driven approach. Based on an equivalent cir-
cuit model consisting of resistors, capacitor, and
Warburg impedance, the capacity fade and power
fade is predicted with SVM algorithm, which char-
acterize the SOH as well as estimate the SOC of the
battery. Later, Pattipati et al."*"’ applied the hidden
Markov model (HMM) model into the SVM to real-
ize the prognostic uncertainty representation. Nuhic

%) applied the SVM algorithm combined train-

et al.
ing and testing data processing based on fisher ratio
to accurately estimate the SOH and RUL of li-ion
batteries, decreased the influence of environmental
and load conditions

Although the SVM algorithm has been widely
used in the field of prediction and gradually extended
to the RUL estimation of lithium-ion batteries, there
are still some deficiencies needed to be improved,
including that the kernel function must satisfy Mercer
conditions, and the number of support vectors are
sensitive to boundary errors, the parameters selection
lack of guidance and hard to determined, and the
predicted results lack of uncertainty ability.

4) RVM

Similar to SVM, the RVM almost has the same
function for prediction. But the RVM is based on
Bayesian framework and support the uncertainty rep-
resentation and management for the predicted output.
Moreover, the RVM is of high sparsity, as a result,
it can effectively avoid the “over-fit” or “less-
fit”*' . The regression model of RVM is as,

P(tlx, ,w,0°)=N(y(x,;w0),0) (4)

where ¢, is the regression output which obeys

normal distribution with mean y and variance o*, X
is the input and W is the regressive coefficients.

Saha et al.'*” built the RVM regression model
with battery internal parameters, to track the degra-
dation process. Furthermore, the PF algorithm is ap-
plied to obtain adaptive parameters for RVM model.
Saha et al.'” compared different data-driven meth-
ods for lithium-ion batteries, including Autoregres-
sive Integrated Moving Average ( ARIMA) model,
RVM algorithm, and other model-based methods,
especially the prognostic uncertainty is emphasized
and evaluated.

Note that the long-term prediction capability of
RVM algorithm is poor, so it is difficult to obtain
satisfied RUL estimated result by using RVM direct-
ly'"'. Wang et al.'*) integrated RVM algorithm and
conditional three-parameter capacity degradation
model to predict the future health conditions of lithi-
um-ion batteries. The RVM algorithm is utilized to
derive the relevance vectors (RVs), and the condi-
tional three-parameter capacity degradation model is
developed to track the predictive values at the cycles
of the RVs. The RUL of lithium-ion batteries is esti-
mated by extrapolation of the conditional three-pa-
rameter capacity degradation model to the failure
threshold. Zhou et al.'**' proposed a combined RVM
algorithm to achieve RUL prediction, in which the
Grey Model (GM) is involved to improve the poor
prediction ability of the RVM algorithm.

5) GPR

As a nonparametric model, the GPR can a-
chieve prognostic uncertainty representation. The
GPR can model any linear and nonlinear system be-
havior to predict system future status. Moreover, pri-
or knowledge can be combined to conduct prediction
in Bayesian framework.

Saha et al.''"' use the correlation of impedance
R+ R, (here R, the electrolyte resistance is, and
R, is the charge transfer resistance) and remaining
capacity to achieve prediction based on GPR model.
The remaining capacity and RUL is indirectly esti-
mated based on the predicted R;+R.;, in which the
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mean and variance of RUL value are output. Liu et
al."" simulated the battery degradation behavior
with the exponential squared covariance function and
periodic squared covariance function, the residual
life prediction of lithium-ion battery is achieved with
the hyper-parameters adjustment based on GPR mod-
el. The most of disadvantages for GPR model is that
the adjustment of hyper-parameters is difficult and
complicated , also with high computation complexity.

We compare several different data-driven prog-
nostic methods for lithium-ion battery RUL estima-

tion, which is shown as Table 1.

Table 1 Comparison of different data-driven
RUL prediction methods

Index Methods Advantages Disadvantages
Low prediction
AR
1 Simple computing precision, point
model )
estimator
Available improved  Lack of uncertainty
ANN algorithms capability, complex
2 ANN £ P . y P
are numerous, training and
satisfied precision over—fitting
. Lack of uncertainty
Small sample size, .
. o capability , parameters
3 SVM high precision, and . o
identification is
convergence .
challenging
. Complicated
Uncertainty
5 GPR . hyper—parameters,
representation ) )
high computation
Not many
) Poor long—term
parameters, high o .
5 RVM prediction capability

sparsity,, uncertainty -
and low stability
management

There are so many other types of data-driven
prognostic approach for lithium-ion battery RUL pre-
diction, such as Grey Model (GM) , exponential re-
gression model, Markov chains, similarity matc-
hing, etc., we will not cover all of the other meth-
ods in this paper.

The data-driven approach only considers the

features of data and establishes the prediction model

with only the historical and monitoring data, in
which the physical process and mechanism is not in-
volved. The adaptability and robustness of data-driv-
en method is always a challenge for the applications
of these methods. In some situation, the sensitivity
of parameters setting is another major concern for the
applications.

Among various data-driven prognostic approa-
ches, the methods supporting uncertainty representa-
tion and management are the hot issues for battery
applications. Especially, for the uncertainty theory
and evaluation, there are still lots of efforts should
be taken.

4.2 Hybrid approaches

To improve the unsatisfied performance of sin-
gle data-driven method for lithium-ion battery RUL
estimation, lots of fusion and integrated algorithms
are proposed, which become the mainstream in this
area.

In general, due to the complexity of life predic-
tion, especially the nonlinearity, non-stationary, and
non-convergence in degradation process, it leads
poor performance for single data-driven algorithm'*’.

There are two categories of fusion approaches:
one is the fusion method combining model-based ap-
proach and data-driven approach, the other is the
hybrid approach integrated different data-driven
methods to overcome the drawback of the single al-
gorithm. In this paper, we will only focus on the lat-
ter situation.

Liu et al.'® proposed an improved Echo State
Networks ( ESNs) algorithm for battery RUL esti-
mation. The prior monotonic restriction is brought to
basic ESNs, that makes the prediction feature map-
ping the degradation trend. Moreover, the Ensemble
Learning (EL) algorithm is used to integrated a se-
ries of sub-models to improve the predicting stabili-

[21]

ty. Kozlowski presented a data-driven Dbattery

RUL prediction approach combined three predictors—

ARMA model, neural networks and fuzzy to achieve

1 [46

a fusion prognostic method. Saha et al."**’ introduced
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a battery RUL estimation method that combined
RVM and PF algorithm ( the PF algorithm realizes
the parameters identification of the RVM model ).
Xing et al."*") developed an ensemble model, which
merges fused regression model and PF algorithm, for
predicting the RUL of the lithium-ion battery ( the
PF algorithm adjusts the parameters of the fused re-
gression model on-line to track the degradation trend

1.1 provided an

of the battery cycle life). Hu et a
ensemble data-driven method that integrates multiple
member algorithms using a weighted sum model
(three weighting schemes are applied and optimized
by the k-fold cross validation). Among these fusion

1.1 presented a fusion

prognostic strategies, Liu et a
framework, data-driven prognostic method and mod-
el-based PF approach are integrated, to increase the
system’ s long-term prediction performance.

In the future, the ensemble learning can be
widely used for the fusion and integration of differ-
ent data-driven prognostic methods. The on-line al-
gorithms and uncertainty fusion should be the key is-
sues in the hybrid approaches for battery RUL esti-

mation.
5 Challenge and future perspective

Currently, in the field of lithium-ion batteries,
the development of new battery materials, new man-
ufacturing technologies, especially high safety, high
energy density batteries are the hotspots. And the re-
lated issues including condition monitoring, state es-
timation and prediction, health management, are
still meeting a lot of challenges and should be stud-
ied further.

The future trends for the lithium-ion battery mo-
nitoring, prognostics and RUL estimation should be
focused on are as follows.

1) Monitoring methods and technologies: the
on-line condition monitoring including state-aware
technology , health state parameters identification and
extraction need to be further studied.

2) Smart and embedded sensing and sensor

technologies for lithium-ion battery.

3) A integrated prognostic framework involving
state monitoring, anomaly detection, intelligent di-
agnostics and prognostics can be considered.

4) The degradation modeling and remaining
useful life estimation under dynamic operating condi-
tion.

5) Fusion and integrated methods for lithium-
ion battery health status assessment.

6) Accelerated degradation test and accelerated
life test for lithium-ion batteries considering on-line
and off-line conditions.

7) Related issues on battery pack should be
paid more attentions, and only the prognostics and
RUL prediction for single battery can not provide e-
nough decision-making reference in actual industrial

applications.
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