INSTRUMENTATION, Vol. 1, No. 2, September 2014

High performance heterogeneous embedded

computing . a review

HE Yongfu, WANG Shaojun, PENG Yu

(Department of Automatic Test and Control, Harbin Institute of Technology, Harbin 150080, China)

Abstract: As increasingly widening gap of computing demand and performance in embedded computing domain, heterogeneous

computing architecture which delivers better performance as well as lower power in limited size is gaining more and more atten-

tion. At first, the heterogeneous computing model is presented. And the different tightly coupled single chip heterogeneous archi-

tectures and their application domain are introduced. Then, task partitioning methods are described. Several programming model

technology are analyzed and discussed. Finally, main challenges and future perspective of High Performance Embedded Compu-

ting (HPEC) are summarized.

Key words: HPEC; heterogeneous SoCs; hardware/software partition; heterogeneous programming

1 Introduction

Computing has already become a seamless and
ubiquitous part of the world '''. High performance
computing (HPC) today does not only happen in
traditional application fields like climate modeling,
nuclear waste simulation, and warfare modeling
which based on server farms or big supercomput-
ers'?). Embedded applications such as mobile com-

i ol3] ; sagl4]
puting >, airborne electronics ",

[6]

medical ima-
ging'®’ and financial services'®' increasingly demand
a huge amount of computing performance. In addi-
tion, computing challenges are even more impressive
when those high performance applications have to be
achieved by a power sensitive and size limited device
rather by traditional big and high power consumption
servers, or supercomputers. For instance, Media de-
vices like a 3G mobile phone requires 210 to 290
Giga operations per second (GOPS) of performance
to handle a 100—Mbps channel in a small handheld
package with a maximum power dissipation of
IW!'". The required processing performance has al-
ready surpassed the once exotic Cray-1 supercomput-
er can achieve'®’. For hyper-spectral remote sensing
application in space, on board space processing sys-

tems require implementing fast computations of hy-

per-spectral image processing algorithms on recorded
visible and near-infrared spectrum whose data vol-
ume is gigabytes per flight by low weight and low
power integrated components* .
High performance embedded computing
(HPEC) provides a type of computing model which
embedded in equipment or an appliance to perform
specific compute and data intensive applications'” .In
contrast to traditional HPC based on servers, this
type of high performance computing should be care-
fully designed to meet stringent requirements: high
performance, flexibility, low cost, low power con-
sumption and limited size''"" .

Embedded single-core General Purpose Proces-
sors (GPPs) have long been used to provide pro-
cessing capacity in HPEC. The exponentially tran-
sistor densities grown along with Moore’ s Law and
associated impractical levels of power dissipation
make single-core processor facing scaling limitation.
In turn, parallelism is chosen as an effective ap-
proach to continue the proportional scaling of proces-
sor performance by implementing multicore on a sin-
gle chip in the past years''''. While the “multicore
era” is already facing the phenomenon of “Dark Sil-

9 [12

icon” ') that the maximally utilization of die area is

curtailed because of the failure of “Dennard Scal-

2 HE Yongfu et al: High performance heterogeneous embedded computing: a review

ing” """ It means that more than 50% transistors of

a fixed-size multi-core chip will not be powered on
simultaneously at future 8 nm technologies as sharp
increases in power consumption. Actually, HPEC
applications are now demanding much more perform-
ance than conventional multi-core processors alone

. 1
can deliver'!

! Considering the power and perform-
ance constraints, parallelism in processor is not the
most efficient way to address rising technology gap
between requirements and performance.

Domain specific processing such as Digital Sig-
(DSPs)
DSPs) , General Purpose Graphics Processing Unit
(GPGPUs) and Field Programmable Logic Array

(FPGAs) are proved to be much more powerful in

nal Processors (especially multi-core

algorithm acceleration for many computing intensive
15-16]

applications® . However, they all have their own
overheads. DSPs lack the ability to manage conven-
tional task. GPGPUs also require GPPs to handle da-
ta throughput. FPGA is not so efficient for serial
parts of an algorithm.

Heterogeneity which converges general purpose
processing and domain specific processing is consid-
ered as an alternative to continue on an exponential
performance scaling trajectory. Combing GPPs with
powerful application specific coprocessors (e. g.
DSPs, FPGAs, GPGPUs), the heterogeneous sys-
tem supports control and serial task on multi-core
processors and computing demanding tasks by heter-
ogeneous parallel processing on coprocessor. The
coupling style of GPPs and coprocessors is critical
for the performance improvement. For a loosely cou-
pled heterogeneous system in which processor and
coprocessor are interconnected through IO in a
multi-chip way, the scalability, flexibility, power,
and bandwidth may limit the further improvement .
With the System on Chip(SoC) technology, multi-
core GPPs and coprocessors are tightly coupled into
a single hardware through high bandwidth bus on
chip. This new class of heterogeneous SoC compu-
ting model delivers lower power consumption, less

[17

area and higher performance 'oIts computing per-

formance outperforms traditional processors only ar-
chitectures by an order of magnitude or more as well
as energy efficient improvement for specific applica-

18] Heterogeneous architectures based on differ-

tion
ent granularity of coprocessors provide different ca-
pabilities for high performance embedded computing.
DSPs and GPGPUs based heterogeneous architec-
tures are often saw in mobile embedded computing
like cell phone and digital media applications. And
FPGAs provide a reconfigurable, pipelined and par-
allel structure computing model that can keep pace
with rising performance demands. So heterogeneous
architectures based on FPGAs have much more com-
prehensive applications. For instance, on board

[19]

. . 4]
space processing acceleration' | data center''”’ and

cloud computing' '™

In HPEC, computing architectures are increas-
ingly turning to heterogeneity as solutions for boos-
ting performance in the face of power constraints.
However, challenges of developing these heteroge-
neous architectures have grown with the continued
trend. The biggest barrier lies in the absence of an
intuitive heterogeneous programming model.

Two critic problems must be solved efficiently.
First problem is task partitioning. In order to exploit
heterogeneous system easily, boundaries of what to
do in processor and what to do in coprocessor of an

200 For one

application should be defined explicitly
appropriate partitioning of an algorithm, the nature
of the algorithm, granularities of coprocessor, data
transfer latency and bandwidth between the processor
and coprocessor should be taken into account. The
second problem is how to build compilers for devel-
opment. High level compilers must be able to choose
the most efficient processing core for the type of pro-
cessing needed for a given application task in run
time'*'".

The rest of this paper is organized as follows:
in Section 2, the embedded heterogeneous compu-
ting model is proposed followed with single chip het-
erogeneous computing model. Then different tightly

coupled heterogeneous SoCs architectures and their

INSTRUMENTATION, Vol. 1, No. 2, September 2014

application domain are introduced. Section 3 firstly
describes the methods for task partitioning. Then
several programming model technology are analyzed
and discussed. Finally, section 4 summaries the main

challenges and future perspective.

2 Embedded heterogeneous computing
architectures

An embedded heterogeneous computing system
consists of processor (GPPs) and coprocessor (e.g.
DSPs, GPGPUs, FPGAs) which are responsible for
different computing tasks in one application. Proces-
sor acts as a master who is in charge of computing
task schedule between processor and coprocessor.
Also, processors can execute serial intrinsic parts of
an algorithm. For those computing intensive and par-
allel intrinsic parts of an algorithm, they can be
thrown into coprocessors for acceleration.

An important advantage of the heterogeneous
approach is that algorithms can be executed effective
on processing cores of distinctively different types
that is best suited for them rather than force the en-
tire application to a traditional GPP or to a coproces-
sor. In other words, it matches the computational
model of the algorithm with the granularity and capa-
bilities of the processing entity. In turn, applications
can operate at minimum supply voltage and clock
frequency. Hence heterogeneity provides energy effi-
ciency and flexibility at the right granularity'*'. For
example, PN-code generation runs efficiently on
reconfigurable architectures like FPGA '™,

For the implementation of a heterogeneous com-
puting architecture, there are two couplings models
as shown in Fig.1.

Loosely coupled coprocessors access processor’
s memory through a bridge, adding several cycles to
data accesses. The solution does suffer from commu-
nication latency problems. Because the data to be
processed are stored in main memory, and must be
moved to and from the coprocessor, so any accelera-
tion realization must amortize this communication o-

verhead. Besides, this multi-chip style’ s power con-

sumption poses huge challenge for embedded appli-
cation. Nowadays, with the advancement of SoC
technology, GPGPU, DSPs and FPGA turn to an-
other called tightly coupled approach with proces-

Coprocessor

SOrIS.

Interconnection

Off Chi
Interconnection on chip

I H ‘\Tlghtly coupled
M @oprocessor

Fig. 1 Simplified overview of a heterogeneous computing

architecture

Tightly coupled architecture means that proces-
sor’s and coprocessors coexist on the interconnection
on chip, having direct access to processor memory.
This reduces the communication overhead, bringing
coprocessor closer to the main processor and allows
the coprocessor to take advantage of the memory. O-
verhead of inter-processor communication also con-
tributes to the computation of an application. There-
fore, in embedded application, high performance
and tight coupling interconnect is needed to deliver
low latency and high bandwidth to the GPP to bal-
ance computation and inter-processor communica-
tion. In addition, due to very high level integration
of processors and coprocessors as well as much shor-
ter wiring on the same chip, tightly coupled ap-
proach consumes considerably less power.

As a result, heterogeneous SoCs which embody
a rich mix of tightly coupled GPP cores, coproces-
sors (e.g. DSPs, GPGPUs, and FPGAs) and a high
performance interconnect is the most efficient archi-
tecture to enhance the GPP performance in embedded

computing"*’ .

2.1 General purpose processors

GPPs work only as master in the heterogeneous

computing architecture for embedded computing.

4 HE Yongfu et al: High performance heterogeneous embedded computing: a review

However, in the past, they were the main stream ar-
chitecture of choice for a wide variety of embedded
application.

GPPs have several registers, high clock rates,
and complex control mechanisms. Before early
2000s, GPPs only consist of single-core CPU. Pro-
cessing techniques like instruction pipelining, super-
scalar operation and caches are widely used to opti-
mize instruction execution time and reduce the aver-
age latency in accessing instructions and data. Be-
sides, single-core CPU’ s performance scaled with
frequency in line with Moore’s Law. Unfortunately,
with the scaling frequency, power dissipation esca-
lates to impractical levels. Also, instruction parallel-
ism suitable for superscalar issue is finite. In addi-
tion, it is difficult to design processor when pipelin-

‘2] As a result, all of

ing past about 10-20 stages
these problems have placed limits on single core per-
formance scalability.

Computer architecture researchers turn to mul-
ticore architectures to meet high performance de-
mands. Multicore processors avoid those problems by
filling up a processor die with multiple, tightly on-
chip coupling, relatively simpler processor cores in-

stead of just one huge core'""

. By Symmetric multi-
processing (SMP) technology which spread multiple
threads of execution across the small size cores,
multicore processors can achieve higher performance
with significantly lower power consumption at low

clock frequency'*”.

Those small size cores vary
from very simple pipelines to moderately complex
superscalar processors. General purpose embedded
multicore products such as ARM’ s MPCores have
However GPPs

aimed to conventional domain applications which

already dominated the market'® .

lead to less efficient for specific computing intensive
task. And multicore processors still face the scale
limitation. As a result, main stream processors today
can stamp down only a limited number of processing
cores on the same die to stay within the power and
thermal limitation "', That is the reason GPPs

should be augmented with specific computing ele-

ments to improve performance.
2.2 Heterogeneous socs based on dsps

Digital Signal Processors (DSPs) are typically
weak at traditional general purpose applications while
designed specifically to rapidly perform arithmetic
multiply accumulate operation in one clock cycle. By
contrast, most GPPs require multiple cycles to per-
form a multiplication. It makes DSPs suitable for sig-
nal processing because most signal processing algo-
rithms can be map to standard vector and matrix op-
erations. And multiply accumulates are common in
these operations.

For Texas Instruments TMS320C64x family,
the DSP core processor has two multipliers for a 32-
bit result and six Arithmetic Logic Units (ALUs).
The DSP core can produce four 16-bit Multiply-Ac-
cumulates (MACSs) per cycle for up to 3600 million
MAC:s per second (MMACS) , or eight 8-bit MACs
for up to 8800 MMACS'* .

To scale performance, high-end DSPs often a-
dopt multiprocessor system designed with arrays of
DSPs. For instance, TMS320C66x features with four
1.0 GHz or 1.2 GHz Co66x Fixed/Floating-Point
DSP Cores. Each core delivers 38.4 GMACS for
Fixed Point or 19.2 GFlops for Floating Point at
1.2 GHz operating frequency [30]. However, DSPs
are still processors in essence that have to face “Dark
Silicon” phenomenon.

DSPs are widely used in mobile computing ap-
plication in which GPP tightly coupled with DSPs
serve as cell phone processor to perform baseband
operations, including both communication and multi-
media operations. The Texas Instruments (TI)
OMAP architecture has several implementations. The
OMAP 3525 has two CPUs: an ARM Cortex-A8 and
a TMS320C64x digital signal processor (DSP) ™.
The ARM acts as a master, and the DSP acts as
slave performs signal processing operations.

With the right mix of processing elements, TI’
s new scalable KeyStone multicore SoCs architecture

provides the efficient blend of general processing and

INSTRUMENTATION, Vol. 1, No. 2, September 2014

specific DSP processing, as shown in Fig.2. Key-
Stone consists of high performance four ARM Corte-
x™-A15 MPCore
TMS320C66x DSP cores. TeraNet is a multilevel in-

terconnection which delivers over two terabits per

processors and eight latest

second of concurrent data throughput of the on-chip
data flow within the KeyStone multicore architecture.
It enables every processing element operating near
full capacity at all times. This enable KeyStone II
SoCs to deliver very high performance for various
computing demanding applications, such as medical
imaging, mission critical radar, test and measure-

ment* .

SR
(ARM cores} ‘ DSP cores
ARM 1
[shared L2 [LRI J g
Multicore Shared Memory =
Controller Shared L3
(por3L) (DDR3L)
12C
[UART]@ SPI]@EPCIe]@ USB3]

Fig. 2 Keystone multicore SoC architecture

2.3 Heterogeneous socs based on gpgpus

Unlike powerful single-thread performance and
fast clock speed of GPPs, the processing element for
Graphics Processing Unit (GPU) is relatively sim-
ple. It consists of a single fetch unit and eight scalar
units. Each instruction is fetched and executed in
parallel on all eight scalar units. Much more process-
ing elements can be packed per die as the area of
each is relatively small.

In embedded application, GPU is widely used in
mobile media computing specifically for graphics ap-
plications that have a large degree of data parallelism.
For General Purpose computing with GPU, the algo-
rithm is broken up into thousands of threads, which

are mapped to the available computational units. Each

of these processing elements produces a vector wide
of output data every clock cycle. GPGPUs tend to
perform efficiently on algorithms where the ratio of
computation task to I/0 is very high. As the host pro-
cessor must provide data over interconnection to the
GPU. And I/0 bandwidth is limited. So for those da-
ta without a high degree of calculations to be done,
GPU will become data starved *"'.

Mobile SoC providers are beginning to integrate
GPUs and GPP into one chip for the field of portable
high performance consumer electronics. Tightly cou-
pled approach greatly reduces the CPU-to-GPU la-
tency. One prime example is NVIDIA’ s Tegra 3,
which ARM Cortex-A9 with
NVIDIA’ s ultra-low power GEForce GPU which
supports 1080p video. By offloading much of the

combines an

computation to the GPU, Tegra 3 can improve

3 Another device is the

performance significantly'
PICA200 which embedded GPU for the Digital
Media application. The PICA200 can operate up to
40 million triangles per second or 800 million pixels
per second, while consuming only 0.5—1.0 mW/

MHz'%,
2.4 Heterogeneous socs based on fpgas

FPGAs enable designers to achieve performance
similar to traditional Application Specific Integrated
Circuit (ASIC) with lower design costs and quicker
time-to-market. The FPGA architecture consists of a
large number of programmable logic elements,
SRAM memories and multiplier blocks, digital signal
processing (DSP) , serial transceivers, memory con-
trollers, and advanced I/O functions on a VLSI chip.

FPGAs are relatively new to high-performance
computing , but have compelling advantages. Firstly,
FPGA architecture provides the flexibility to create a
specific pipeline and parallel hardware with massive
array of application specific custom logic that enable
both instruction and data-level parallelism. As a re-
sult, the latency for processing a given data stream is
much lower than on GPGPUs and CPUs. This can be

critical for real time applications, such as financial

6 HE Yongfu et al: High performance heterogeneous embedded computing: a review

trading algorithms acceleration. Secondly, FPGAs
have superior GFLOPS/W capability and this can be
a key advantage in applications where matrix manip-
ulations, filters, transforms, and DSP operations
dominated and environment constrained, such as avi-
onics. The peak performance of the Virtex—7 980XT
FPGA provided by Xilinx is estimated around 987
GFLOPS for floating-point operations'* . Altera’ s
Stratix-series FPGAs offer over 1 TFLOPS of float-
ing point DSP performance, which greatly exceeds
the performance of any ARM-based processor and
only outperformed by high-end GPUs'*"!. And the
frequency of FPGAs typically operates between 100
- 300 MHz consuming tens of watts. While multi-
cores’ CPUs execute between 2 - 3 GHz that tend
to consume power in hundreds of watts. It means
that for a given power budget, the FPGA can typi-
cally perform far more computations than a GPGPU
and CPUs. Thirdly, reconfigurable ability of FPGAs
offers the flexibility and adaptivity needed for future
scalable applications.

Due to the highly parallel reconfigurable archi-
tecture and peak float performance coupled with low-
er power consumption compared to CPUs and GPG-
PU, the acceleration of various applications using
FPGAs can obtain one or even two orders of magni-
tude and high performance-to-power efficiency'* In
addition, FPGA provide high bandwidth, low laten-
cy interfaces to both the main processor and system
memory meeting challenging interface demands of
HPC applications.

FPGAs are suitable for use as computing de-
vices in HPC market includes high-performance serv-
ers and clusters as well as high-performance embed-
ded computers.

One main drawback to use FPGAs is the diffi-
culty in programming them. The traditional way to
program FPGAs has been through the use of hard-
ware description languages (HDLs) such as Verilog
and VHDL languages which require technical abili-
ties and take too many efforts.

Heterogeneous SoCs based on FPGA take ad-

vantages of the benefits of FPGA while make up its
weakness of serial processing ability. Altera SoCs in-
tegrate an ARM-based hard processor system (HPS)
consisting of a dual-core ARM © Cortex™-A9 MP-
Core processor, peripherals, and memory interfaces
with the FPGA fabric using high-bandwidth intercon-
nection. This tightly integration provides over 100-
Gbps peak bandwidth with integrated data coheren-
cy™ . The Zynq ©-7000 family is based on the Xil-
inx All Programmable SoC architecture as shown in
Fig.3. It enables implementation of custom logic in
the 28 nm Xilinx programmable logic (PL) and cus-
tom software in a feature-rich dual-core ARM ©
Cortex™-A9 based processing system (PS). It al-
lows for the realization of unique and differentiated
system functions. The integration of the PS with the
PL allows levels of performance that two-chip solu-
tions cannot match due to their limited I/O band-

width, latency, and power budgets "’ .

FPGA
I Cache Cache

CL] Cache) (Ll Cache

I Coherency
C Shared L2 Cache) Engine
[I

Coherency Engine Over NOC Interconnect j

I

DDR /o
Zyn
MemCon] [SRAMJ [Devnce] t DAL] S)(I)(;l

Fig. 3 Zynq SoCs architecture

In the next phase of cloud computing, there is
an emerging trend of incorporating embedded pur-
pose-built computing elements to supplement general
purpose servers and optimally address the specialized
processing requirements for compute intensive appli-
cation, such as time-sensitive financial analysis and
data center. FPGA based heterogeneous SoCs archi-
tecture with the right mix of processing elements
provide the efficient blend of processor and FPGA

processing for optimizing cloud applications, per-

INSTRUMENTATION, Vol. 1, No. 2, September 2014

forming better and more economically than cloud

. 17
powering servers[].

3 Heterogeneous programming

Full benefit of heterogeneous computing archi-
tectures will not be harnessed until the software tool
fully embraces heterogeneous programming. The big-
gest barrier comes from the absence of an intuitive
programming model that can match the computation-
al model of the algorithm with the granularity and
capabilities of the processing entity. Firstly, tasks
have to be explicitly partitioned for the individual
processors and coprocessors. Secondly, high level
compilers must choose the most efficient processing
core for the type of processing needed for a given

application task in run time.
3.1 Hardware/software partitioning

Hardware/software partitioning considers an ap-
plication as comprising a set of regions and maps
each region to either processor component or copro-
cessor components to optimize performance .

In general, most applications start with an all
software sequential implementation. The speedup of
sequential programs is governed to a large extent by
the well-known Amdahl’ s Law. Amdahl’ s Law
states that partitioning yield substantial results only
when mapping those regions accounting for a large
percentage of execution to coprocessor for maximize
acceleration. Ideally, for a 10x speedup, those re-
gions accounting for at least 90 percent of an appli-
cation’ s execution time must be mapped to copro-
Cessor.

Finding the optimal hardware/software partitio-
ning is a NP-hard problem in part because of the
large number of possible partitions'*'. Several issues
such as granularity of critical region, execution mod-
els and algorithm nature make the problem of parti-
tioning of sequential programs quite challenging.

Finer granularity involves arithmetic operations
or statements may expose better partitions at the ex-

pense of a more complex partitioning problem and

more difficult estimation challenges. While coarser
granularities that involve basic blocks, loops, or en-
tire functions are much more efficient as coarser
granularity simplifies the partitioning problem by re-
ducing the number of possible partitions. It also ena-
bles more accurate early estimations of a region’ s
performance, size and power " .

Execution mode of coprocessor and processor
includes overlapping or mutually exclusivity. In the
overlapping model, the processor activates a copro-
cessor and then continues to execute concurrently
with it. In the mutually exclusive model, the proces-
sor waits idly until the coprocessor finishes, then
processor resumes execution. Overlapping can im-
prove overall performance, but mutual exclusivity
simplifies implementation by eliminating issues relat-
ed to memory contention, cache coherency, and
synchronization. When the processor and coprocessor
cycles are closer to be equal, overlapping may im-
prove performance up to a limit of 2 times'*"’.

Furthermore, for some applications originally
written in software, part of its regions may perform
well in coprocessor like DSPs or GPUs but not be
suitable for hardware based coprocessor (e.g. FP-
GAs) implementation. For instance, recursive func-
tion calls, pointer based data structures, or dynamic
memory allocation of application regions may not be

easy to implement in FPGAs'*

. In order to support
a wider range of program constructs and behavior,
new synthesis techniques have been developed"*’.Or
those regions must be stay in GPPs of a heterogene-

ous computing architecture.
3.2 Heterogeneous programming model

Programming model is an efficient way that en-
ables programmers to abstract the logic of applica-

[44

tions and map it to the hardware platform' ™. A pro-
gramming model must not only hide heterogeneity of
the underlying processing elements, communication
mechanisms, the storage elements and I/0O blocks,
but also expose the type of high-level parallelism"*'" .

Many programming model technology has been re-

8 HE Yongfu et al: High performance heterogeneous embedded computing: a review

searched recently. Runtime heterogeneous execution
has been supported by several tools such as
OpenMP, CUDA and OpenCL. Some research also
presents automatic parallelization and design space
exploration to improve runtime heterogeneous execu-
tion. Besides, high level synthesize is the basic tech-
nology for heterogeneous programming model.

3.2.1 High Level Synthesize

High level synthesize is a kind of programming
model technology which follows the flow of acceler-
ation from the initial C, C++ or System C descrip-
tion of functionality at a high level of abstraction to
the final device specific Verilog or VHDL register
transfer level (RTL) description of a hardware im-
plementation (targeting an FPGA) that matched the
data-flow structure of the program. Commercial tools
include ROCCC"*' | Xilinx Vivado HLS'*'. In the
same way, graphical programming models provide
digital signal processing algorithm designers with a
natural way of specifying an application. Commercial
examples include MATLAB Simulink'*"’ | National
Instruments LabVIEW */ .

High level synthesize make the optimization of
computing architecture based on the program, rather
than optimizing the program based on the computer.
However, high level synthesize does not covers runt-
ime support for parallel execution of heterogeneous
tasks on heterogeneous computing architectures.
3.2.2 Runtime Heterogeneous Execution

Plenty of heterogeneous programming models
have been conducted at task level. OpenMP expres-
ses parallelism using a set of compiler directives
called #pragma. OpenMP is supported on heteroge-
neous Cell processor). NVIDIA’ s Unified Device
Architecture (CUDA) is a heterogeneous computing
environment in C and C++, aims for the develop-
ment of CPU+GPU architecture'™' . CUDA requires
the programmer to be aware of the underlying archi-
tecture in writing special code for performing parallel
processing. Open Computing Language (OpenCL) is
a standard multi core programming model. It enable

acceleration of task parallel or data parallel compu-

ting targeting heterogeneous computing environment
consisting of the host CPU and any attached OpenCL
“devices” (CPUs, GPUs, and FPGA) in a high-

level language such as cls152]

. An OpenCL applica-
tion comprises a host program and a set of kernels.
In OpenCL, parallelism is declared by the program-
mer. Parallel threads are instances of computational
kernels and used to express data parallelism. Task
parallelism is accomplished by using of queues and
events. With which, the coordination of the coarse

grained control flow is also achieved ™

. However,
OpenCL still exposes too much low-level details
such as explicit platform, context management, ker-
nel and data transfer management, making it compli-
cated to use by non-experts. The ideal heterogeneous
programming model is enable programmers to focus
on developing their algorithm rather than focusing on
the tedious details of underlying architecture.

Besides, a major weakness of OpenMP, CUDA
and OpenCL approaches is the lack of fully support
for automatic parallelization. Task mapping and
scheduling schemes are performed manually; there-
fore the speedup achieved is largely dependent on the
experiences of programmers.

3.2.3 Automatic Parallelization

FPM'"™ is a flexible programming model for
heterogeneous multiprocessors, which is composed of
a front-end source-to-source compiler, an out-of-or-
der scheduler and an adaptive mapping scheme. Com-
piler translates annotated programs to internal func-
tions for parallel execution. Scheduler checks the data
dependencies, renames the parameters, and issues the
tasks automatically when the tasks are ready.

It can automatically identify the parallel region
and eliminate the data dependencies with renaming
techniques. Using simple annotations (# Pragma) in
the sequential program that indicates which parts of
the code will be run in parallel. Programmers are no
long concerned on dealing with the task mapping and

distribution any more.
[55]

Some other work ™" presents OmpSs program-

ming model. OmpSs is a task dataflow programming

INSTRUMENTATION, Vol. 1, No. 2, September 2014

model that includes very fine-grained task heteroge-
neous execution support as well as data and task de-
pendency management. It considers each accelerator
(e.g. a GPU, a FPGA) as a single execution unit,
which can efficiently execute specialized pieces of
code. As a result, begin with C code annotated with
OmpSs directives; the presented OmpSs ecosystem
can map the execution of certain tasks to SMPs and a
type of hardware accelerator. Combining OmpSs
programming model with Zynq ecosystem, ARM elf
executable and the bit-stream containing the acceler-
ators for the FPGA tasks specified in the source code
are generated automatically and transparently.

3.2.4 Design Space Exploration

Automatic Parallelization technology eases pro-
gramming by allowing the programmer to implicitly
define tasks, task mapping and even synchroniza-
tion. Compiler and the runtime system are responsi-
ble to insert communication and synchronization bar-
riers as well as to map tasks to processing core.
However, if the parallelization directive entered by
the programmers is not correct, wrong code will be
generated.

Many design Frameworks (e.g. MAMPSx' ™)
are presented to simplify the design and program-
ming of heterogeneous computing architectures
through automated design space exploration (DSE).
DSE takes the application specifications, the archi-
tecture model and scheduling and communication
model of heterogeneous computing architectures as
input to analyze and predict the worst case perform-
ance bound and generate a large number of architec-
tures that could be ported to target heterogeneous
computing platform in a short amount of time. Thus
it offers a choice to the programmers between per-

formance, cost and power *" .

4 Challenge and future perspective

Currently, in the field of high performance em-
bedded computing, many heterogeneous architec-
tures have exploited right engines (e. g. DSPs,
GPUs, FPGAs) to accommodate digital signal pro-

cessing, graphics, real-time processing, and general
compute processing tasks delivering performance,
power, and cost benefits.

Heterogeneous multiprocessing using reconfigu-
rable, pipeline and parallel structure processing en-
gines (e.g. FPGA) targeting specific task will be-
come a mainstream choice of future, scalable com-
puter architectures in the face of the impending threat
of dark silicon.

Heterogeneous multiprocessing provides design-
ers with software, hardware, interconnect, power,
security, and [/O programmability. With the most
advanced TSMC 16nm Fin-FET process technology
and second-generation SSI (stacked silicon intercon-
nect) 3D IC technology, a “More than Moore” sys-
tem with more than double the capacity and a 50%
bandwidth advantage versus programmable logic de-
vice today will be implemented.

However, heterogeneous multiprocessing still
presents following challenges.

1) Optimizing memory access and providing
low — latency, coherent communications with ade-
quate bandwidth for heterogeneous processing.

2) Developing programming model that enable
high level abstraction while automatic partitioning
the task and optimizing the mapping of system-level

tasks to all available resources at runtime.

Acknowledgmeng

This project is supported by National Natural Science
Foundation of China (Grant No. 50305035)

References

[1] FISHER J A, FARABOSCHI P, YOUNG C. Embed-
ded computing; a VLIW approach to architecture,
compilers and tools [M]. Elsevier, 2005.

[2] MASCO J. 7 Bad Weather. Times of Security : Ethnog-
raphies of Fear, Protest and the Future [M].
Routledge, 2013.

[3] JALIER C, LATTARD D, JERRAYA A A, et al.
Heterogeneous vs homogeneous MPSoC approaches for

a mobile LTE modem [C]. Proceedings of the

10

HE Yongfu et al: High performance heterogeneous embedded computing: a review

[4]

[5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Conference on Design, Automation and Test in
Europe, European Design and Automation Associa-
tion, 2010; 184—189.

PLAZA A, DU Q, CHANG Y L, et al. High perform-
ance computing for hyperspectral remote sensing [J].
Journal of Selected Topics in Applied Earth Observa-
tions and Remote Sensing, IEEE, 2011, 4(3): 528-
544.

CONG J, SARKAR V, REINMAN G, et al. Customi-
zable domain—specific computing [J]. Design & Test
of Computers, IEEE, 2011, 28(2) . 6-15.
LOCKWOOD J W, GUPTE A, MEHTA N, et al. A
low—latency library in FPGA hardware for high-fre-
quency trading (HFT) [J]. High—Performance Inter-
connects, Symposium on, High—Performance Intercon-
nects, Symposium, IEEE, 2012. 9-16.

VAN BERKEL C H. Multi—core for mobile phones,
Proceedings of the Conference on Design, Automation
and Test in Europe[J].European Design and Automa-
tion Association, 2009 1260—-1265.

RAJOVIC N, CARPENTER P M and GELADO I, et
al. Supercomputing with commodity CPUs: are mobile
SoCs ready for HPC? [C]. Proceedings of SC13:
International Conference for High Performance
Computing,
ACM, 2013. 40.

MARTINEZ D R, VAI M M and BOND R A. High

performance embedded computing handbook [M]. A

Networking, Storage and Analysis,

systems perspective, CRC Press, 2008.

WOLF W. High-performance embedded computing:
architectures, applications, and methodologies [M].
Morgan Kaufmann, 2010.

OLUKOTUN K, HAMMOND L, LAUDON]J. Chip
multiprocessor architecture: techniques to improve
throughput and latency [J].
Computer Architecture, 2007, 2(1) : 1-145.
ESMAEILZADEH H, BLEM E, ST AMANT R,

et al. Dark silicon and the end of multicore scaling,

Synthesis Lectures on

38th Annual International Symposium on Computer
Architecture (ISCA), IEEE, 2011 365—376.
CHUNG E, BURGER D, BUTTS M, et al. Reconfig-
urable computing in the era of post-silicon scaling[C].
21st Annual International Symposium on Field-Pro-
grammable Custom Computing Machines (FCCM) ,
IEEE, 2013.

QAYUM M A, SIDDIQUE N A, HAQUE M A, et

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

al. Future of multiprocessors: International Conferen ce
on Heterogeneous Chip Multiprocessors, Informatics,
Electronics & Vision (ICIEV), IEEE, 2012. 372 —
376.

GUO C, FU H, LUK W. A fully—pipelined expecta-
tion—maximization engine for Gaussian Mixture Models
[C]. International Conference on Field—Programmable
Technology (FPT), 2012; 182-189.

ZHANG F, ZHANG Y, BAKOS J D. Accelerating
frequent itemset mining on graphics processing units
[J]. The Journal of Supercomputing, 2013, 66(1) :
94-117.

CHUNG E S, MILDER P A, HOE J C, et al. Single—
chip heterogeneous computing: Does the future include
custom logic, FPGAs, and GPGPUs[C]. 43th Annual
International Symposium on Microarchitecture, IEEE
Computer Society, 2010. 225-236.

KAELI D, AKODES D. The convergence of HPC and
embedded systems in our heterogeneous computing fu-
ture[C]. 29th International Conference on Computer
Design (ICCD), IEEE, 2011 9-11.

BYMA S, STEFFAN J G, BANNAZADEH H, et al.
FPGAs in the Cloud: Booting Virtualized Hardware
Accelerators with OpenStack [C]. 22nd Annual Inter-
national Symposium on Field — Programmable Custom
Computing Machines (FCCM), IEEE, 2014. 109 —
116.

HAUCK S, DEHON A. Reconfigurable computing:
the theory and practice of FPGA —based computation
[M]. Morgan Kaufmann, 2010.

MAZO J C, LEUPERS R. Programming Heterogene-
ous MPSoCs[M]. Springer International, 2013.

SMIT G J M, KOKKELER A BJ, WOLKOTTEP T,
et al. Multi—core architectures and streaming applica-
tions, Proceedings of the international workshop on
System level interconnect prediction. ACM, 2008; 35—
42.

BHAT G M, MUSTAFA M, PARAH S A, et al.
Field programmable gate array (FPGA) implementa-
tion of novel complex PN code generator based data
scrambler and descrambler[J]. International Journal of
Science and Technology, 2010, 4(1): 125-135.
SHAMI M A, HEMANI A. Address generation
scheme for a coarse grain reconfigurable architecture
[C]. International Conference on Application—Specific
(ASAP),

Systems, Architectures and Processors

INSTRUMENTATION, Vol. 1, No. 2, September 2014

11

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

IEEE, 2011:. 17-24.

WATKINS M A, ALBONESI D H, REMAP A. recon-
figurable architecture for chip skmultiprocessors [J].
IEEE micro, 2011, 31(1): 65-77.

VRANESIC Z, ZAKY S, MANJIKIAN N. Computer
organization and embedded systems [M]. McGraw —
Hill, 2012.

GARIBOTTI R, OST L, BUSSEUIL R, et al. Simul-
taneous multithreading support in embedded distributed
memory MPSoCs[C]. Proceedings of the 50th Annual
Design Automation Conference. ACM, 2013: 83.
SHIKANO H, ITO M, ONOUCHI M, et al. Hetero-
geneous multi—core architecture that enables 54x AAC
—LC stereo encoding[J]. IEEE Journal of Solid—State
Circuits, 2008, 43(4) : 902-910.

TMS320C6452 Digital Signal Processor [N/ OL]
http://www. ti. com/lit/ds/symlink/tms320c6452. pdf.
2012.

TMS320C6670 Multicore Fixed and Floating — Point
System on Chip[N/ OL]. http://www. ti. com/prod-
uct/tms320c6670&DCMP = c66hw _ 110411 &HQS =
Other%2BPR %2Bc66hw—pr—6670pf.2014.
OMAP3530 and OMAP3525 Applications Processors
[N/ OL]. http://www. ti. com. cn/cn/lit/ds/sym-
link/omap3530.pdf.2013.

Multicore DSP+ARM KeyStone II System —on— Chip
[N/ OL]. http://www.ti.com.cn/cn/lit/ds/symlink/
66ak2h06.pdf.2013.

LEE V W, KIM C, CHHUGANI J, et al. Debunking
the 100X GPU vs. CPU myth.
throughput computing on CPU and GPU [J]. ACM SI-
GARCH Computer Architecture News, ACM, 2010,
38(3) : 451-460.

NVIDIA’s Tegra 3 [N/ OL]. http://www. nvidia.
com/ object/tegra—3—processor.html.2014.

PICA200[N/ OL]. http://people.csail.mit.edu/kapu/
EG_08/Mobile3D_EG08.pdf.2008.
VANDERBAUWHEDE W, BENKRID K. High
performance computing using FPGAs [J/OL]. WP
(Xilinx) ; WP375 (v1.0) September, 2010, 10; 105.
http.// http.//link. springer. com/book/10.1007/978—
1-4614-1791-07 no—access=true

SUAREZ H, ZHANG Y R. FPGA implementation of a

software—defined radar processor [J]. SPIE Defense,

an evaluation of

Security, and Sensing. International Society for Optics
and Photonics, 2013; 871403-871403-10.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

PRATAS F, ORIATO D, PELL O, et al. Accelerating
the Computation of Induced Dipoles for Molecular
Mechanics with Dataflow Engines [C]. 21st Annual
International Symposium on Field — Programmable
Custom Computing Machines (FCCM) , IEEE, 2013
177-180.

PENDLUM J, LEESER M, CHOWDHURY K. Re-
ducing Processing Latency with a Heterogeneous FPGA
—Processor Framework[C]. 22nd Annual International
Symposium on Field Programmable Custom Computing
Machines (FCCM) , IEEE, 2014 17-20.

ZYNQ 7000, “Zynq—7000 all programmable soc over-
view, advance product specification—ds190(v1.2) [J/
OL]. available on: http://www. xilinx. com/support/
documentation—/data sheets/—ds190—Zynq—7000—0O-
ver—view. pdf,” August, 2012.

LI H, LIU W, HAN H. Graph Reduction Algorithm
Control [C].
International Conference on Automation and Systems
Engineering (CASE), IEEE, 2011; 1-4.

BACON D F, RABBAH R, SHUKLA S. FPGA
Programming for the Masses [J]. Communications of
the ACM, 2013, 56(4) : 56—63.

COOLE J, STITT G. Traversal Caches: A Framework
for FPGA Acceleration of Pointer Data Structures [J].

for Hardware/Software Partitioning,

International Journal of Reconfigurable Computing,
2011, Article ID 652620.

FERNANDEZ-ALONSO E, CASTELLS-RUFAS D,
JOVEN 1J, et al. Survey of NoC and Programming
Models Proposals for MPSoC [J]. International Jour-
nal of Computer Science Issues, 2012, 9(2) . 22-32.
VILLARREAL J, PARK A, NAJJAR W,
Designing modular hardware accelerators in C with
ROCCC 2.0 [C]. 18th IEEE Annual International
Symposium on Field — Programmable Custom Compu-
ting Machines (FCCM) , IEEE, 2010; 127-134.
WINTERSTEIN F, BAYLISS S, CONSTANTINIDES

G A. High-level synthesis of dynamic data structures:

et al.

A case study using Vivado HLS [C]. International
Conference on Field — Programmable
(FPT), IEEE, 2013: 362—365.

Z0OSS R, HABEGGER A, BANDI V, et al. Compa-
ring signal processing hardware — synthesis methods
based on the Matlab tool—chain [C]. 6th IEEE Interna-
tional Symposium on Electronic Design, Test and Ap-
plication (DELTA), IEEE, 2011.

Technology

12

HE Yongfu et al: High performance heterogeneous embedded computing: a review

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

RAVINDRAN K, GHOSAL A, LIMAYE R, et al.
on FPGA
targets [C]. Conference on Design and Architectures
for Signal and Image Processing (DASIP), IEEE,
2012; 1-2.

FERRER R, PLANAS J, BELLENS P, et al. Optimi-

zing the exploitation of multicore processors and GPUs

Tools for deploying dataflow models

with OpenMP and OpenCL, Languages and Compilers
for Parallel Computing [M]. Springer Berlin Heidel-
berg, 2011. 215-229.

TOPA T, KARWOWSKI A, NOGA A. Using GPU
with CUDA to accelerate MoM-based electromagnetic
simulation of wire-grid models [J]. Antennas and Wire-
less Propagation Letters, IEEE, 2011, 10 342-345.
SINGH D P, CZAJKOWSKI T S, LING A. Harness-
ing the power of FPGAs using altera’s OpenCL compil-
er, Proceedings of the ACM/SIGDA international
symposium on Field programmable gate arrays [J].
(FPGA). ACM, 2013; 5-6.

STONE] E, GOHARA D, SHI G. OpenCL: A paral-
lel programming standard for heterogeneous computing
systems [J]. Computing in science & engineering,
2010, 12(3) : 66.

CZAJKOWSKI T S, AYDONAT U, DENISENKO
D, et al. From OpenCL to high—performance hardware
on FPGAs [C]. 22nd International Conference on
Field Programmable Logic and Applications (FPL),
IEEE, 2012. 531-534.

WANG C, LI X, ZHANG J, et al. FPM. A flexible
programming model for MPSoC on FPGA [C]. 26th
International Parallel and Distributed Processing Sym-
posium Workshops & PhD Forum (IPDPSW), IEEE,
2012, 477-484.

FILGUERAS A, GIL E, JIMENEZ-GONZALEZ D,
et al. Proceedings of the 2014 ACM/SIGDA interna-
tional symposium on Field—programmable gate arrays
[C]. FPGA 14. ACM, 2014. 137-146.
FERNANDO S, SIYOUM F, HE Y, et al. MAMPSx :
A design framework for rapid synthesis of predictable
heterogeneous MPSoCs, International Symposium on
Rapid System Prototyping (RSP) [C]. IEEE, 2013;
136-142.

CORRE Y, DIGUET J P, HELLER D, et al. A
framework for high —level synthesis of heterogeneous
MPSoC [C]. Proceedings of the great lakes symposi-
um on VLSI. ACM, 2012, 283-286.

Authors’ Biographies

PENG Yu, born in 1973, received B.
Sc, M. Sc. and PhD degrees all from
Harbin Institute of Technology, in 1996,
1998 and 2004, respectively. Now, he is
professor in the Department of Automatic
Test and Control, School of Electrical

Engineering and Automation, Harbin In-

stitute of Technology, China. He is also the Associated Dean
of School of Electrical Engineering and Automation. His re-
search interests include automatic test technology, intelligent
test data processing, WSNs, prognostics and system health

management, reconfigurable computing, etc.

HE Yongfu ,born in 1988, received B.
Sc and M.Sc degrees from Central South
University (CSU), in 2010 and 2013
respectively. He is currently a Ph.D can-
didate in the Department of Automatic

Test and Control, School of Electrical

Engineering and Automation, Harbin In-

stitute of Technology (HIT), China. His research interests
include reconfigurable computing and intelligent test data pro-

cessing , etc.

WANG Shaojun, 1982,
received B.Sc, M.Sc. and PhD degrees
all from Harbin Institute of Technology
(HIT), in 2005, 2007 and 2012,
respectively. Now he

professor in the Department of Automatic

born in

is an assistant

Test and Control, School of Electrical Engineering and Auto-
mation, Harbin Institute of Technology (HIT), China. His
research interests include time series analysis and prediction,
and automatic test technology, intelligent test data process-
ing, reconfigurable computing, etc.

E-mail; wangsj@ hit.edu.cn

	Instrumentation Volume1 No2.pdf
	组合 1.pdf
	封二 目录.pdf

	正文 I1400202.彭宇修最终稿

