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Fundamental problems in rehabilitation
robots based on neuro-machine interaction
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Abstract ; Study results in the last decades show that amount and quality of physical exercises, then the active participation, and
now the cognitive involvement of patient in rehabilitation training are crucial to enhance recovery outcome of motor dysfunction
patients after stroke. Rehabilitation robots mainly have been developed along this direction to satisfy requirements of recovery ther-
apy, or focused on one or more of the above three points. Therefore, rehabilitation robot based on neuro-machine interaction has
been proposed for the paralyzed limb training of post-stroke patient, which utilizes motor related EEG, UCSDI ( Ultrasound Cur-
rent Source Density Imaging) , EMG for the robot control and feeds back the multi-sensory interaction information such as visual,
auditory, force, haptic sensation to the patient simultaneously. This neuro-controlled and perceptual rehabilitation robot will bring
great benefits to post-stroke patients. In order to develop such a kind of rehabilitation robot, some key technologies, such as non-
invasive precise measurement and decoding of neural signals, realistic sensation feedback, coordinated control for both the reha-
bilitation robot and the patient, need to be solved. In this paper, some fundamental problems in developing and optimizing such a
kind of rehabilitation robot based on neuro-machine interaction are proposed and discussed.
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works . Rehabilitation robot usually works on

1 Introduction

. . . two modes, one is passive recovery training mode
Stroke is a leading cause of serious, long-term ’ P y &

L . . . another is active recovery training mode. Owing to
disability. For instance, in China every year there Y & &

are about 2,000,000 people suffering from a stroke, the patients exhibit a wide range of arm dysfunction

of which approximately 66 percent survives the levels, it is important to provide optimal assistance

stroke, commonly involving deficits of motor func- in robot-assisted rehabilitation therapy, which has

[8] ;
tion. Although the optimal therapy for patients who been demonstrated by Kahn et al. **'. Passive recov-

suffer from stroke or cerebrovascular accidents is still ery training as the initial stage of rehabilitation thera-

a point of discussion, one theory is that patients will
recover better and faster if having intensive physio-
therapy directly after the accident. Undamaged brain
tissue will then take over the functionality of the
damaged tissue and the lost functionality caused by
those severe physical traumas will be regained . In
order to assist the stroke patients during rehabilitation
therapy, some researchers have developed several
robot-assisted rehabilitation therapy systems, such as
MIME '*/, ARM Guide "', MIT-MANUS ¥/,
UECM "*'. Robotic aids can provide programmable
levels of assistance, and automatically modify their

output based on sensor data using control frame

py, its aim is to reduce the muscle tone and spastici-
ty of the impaired limb, and increase its movable re-
gion '*’. The main objective in this stage is to con-
trol the robot stably and smoothly to stretch the pa-
tient paralyzed limb moving along a predefined traj-
ectory with the position controller. Thus, in passive
recovery training mode, providing a desired move-
ment trajectory with appropriate velocity to the pa-
tient is a key issue for rehabilitation robot control.
Lots of studies focused on how to control robot to
move along the desired trajectory in passive rehabili-

[10-12]

tation mode . During recent years the field of

robot-assisted rehabilitation has been inspired by new
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available technologies. One example is Neuro-Ma-
chine Interface ( NMI ) including Brain-Computer
Interface (BCI), EEG and EMG based Human-Ro-
bot Interface (HRI) "' another example is Vir-
tual Reality ( VR), which gives the patients multi-
sensation information such as audiovisual display and
haptic feedback during physical therapy ''*'. Xu
et al. ' developed a novel robot-assisted rehabilita-
tion system based on motor imagery EEG for para-
lyzed arm training of post-stroke patients, and the
experimental results demonstrate the feasibility of the
system. A clinically proven MANUS robot is inte-
grated with the BCI to complement the robot control

mechanism by the motor imagery of the patient '’

] developed an integrated hybrid neu-

Mauro et al.
ro-rehabilitation systems combined with virtual real-
ity, brain neuro-machine interface, and exoskeleton
robots in order to overcome the major limitations re-
garding the current available robot-based rehabilita-
tion therapies.

In this paper, we will review the development
of the rehabilitation robot systems based on Neuron-
Machine Interaction ( NMI) and discuss the key
technologies of the NMI based rehabilitation robot.
At last, the fundamental problems in NMI based re-

habilitation robot systems will be illustrated.

2 Rehabilitation robot systems based on
neuro-machine interaction

In recent years, there is a rapid growth in Neu-
ro-Machine Interface technologies such as BCI which
assist paralyzed or locked-in patients communicate
with the outside world, control devices such as tele-
vision and motorized wheelchair. In particular, some
studies have shown the potential ability of using BCI
to control Functional Electric Stimulation ( FES)
system for assistive hand movements. Tan et al. "
proposes a BCI-FES system for stroke patients’ arm
flexion and extension exercises. Both systems employ
the motor imagery technologies. Wang et al. ' ex-
plores the possibilities of using noninvasive BCI and

mechanical robotic-aided rehabilitation for paralyzed

upper limb rehabilitation of post-stroke patients. The
BCI based rehabilitation robot guides the post-stroke
patients to perform rehabilitation exercises effective-
ly, which motivates the post-stroke patients towards
faster recovery.

Most of the recent researches on rehabilitation
robot systems based on Neuro-Machine Interface uti-
lize movement related EEG or EMG signal acquisi-
tion and processing methods for robot control. Fig.1
illustrates the architecture of motor imagery EEG
based rehabilitation robot system. This system is
composed of three core modules, EEG signal acqui-
sition and processing module, rehabilitation robot
with controller module, visual display module. The
system translates the mental imagination of move-
ments acquired by analyzing EEG signal from a post-
stroke patient into commands to control a robotic
arm to manipulate the patient impaired arm during a
physical therapy exercise.

2.1 Structure of the rehabilitation robot system

based on neuro-machine interaction

According to the current neuro-plasticity re-
search results, existing findings suggest that extrinsic
visual, auditory and haptic feedback may improve
motor and functional performance, and the percep-
tion feedback stimulation is vital for effective reha-
bilitation of post-stroke patients [ 21-23 ]. The struc-
ture of the rehabilitation robot system based on Neu-
ro-Machine Interaction (NMI) with perception feed-
back is shown in Fig. 2.

The rehabilitation robot system based on NMI
consists of four core modules: non-invasion neural
signal acquisition and processing module, rehabilita-
tion robot with controller, interactive virtual reality/
virtual game module, and multisensory stimulation
module. As comparison to the structure of existing
rehabilitation robots based on BCI shown in Fig.1,
the rehabilitation robot system based on NMI empha-
sizes the precise neural signal measurement, deco-
ding as well as multi-sensation feedback.

The noninvasive neural signal acquisition and
processing module, including EEG, EMG and UCS-
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DI ( Ultrasound Current Source Density Imaging,
which detects neuro-signal of functional part) and
some new tools for neural signal detection, measures
the electrophysiological activities of the neuron sys-
tems and extracts features from raw signal data. In
rehabilitation robot module, the controller unit con-
verts the neural signal processing results into control
commands for robot control. The interactive virtual

reality/virtual game module such as virtual walk,

g o o e —

virtual daily tasks, virtual car racing, haptic space
exploring , etc., provides interesting interactive envi-
ronments to patient. The multisensory stimulation
module provides audiovisual display as well as force
stimulation and haptic display, etc., to the post-
stroke patient. The rehabilitation robot system based
on NMI will bring great benefits to rehabilitation

therapy and motor function recovery.
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2.2 Bilateral interaction in rehabilitation robot

system based on neuro-machine interaction

The bilateral interaction rehabilitation exercises
are intended to simultaneously activate the efferent
(motor control) and afferent ( sensory perception )
pathways, by providing the necessary assistance as
needed and causes-effects based inspiration feelings
during the execution of the therapy training. Such a
kind of bilateral interaction has been proven to favor
cortical reorganization and neural path recovery "'’
The rehabilitation therapy studies in the last decade
show that the outcome of the rehabilitation therapy
mainly depends on three aspects; 1) the active par-
ticipation of the patient; 2) the quality and amount
of physical activity; 3) the cognitive involvement of
the patient. Therefore, advanced technologies sup-
ported bilateral interactions between human neural
systems and machine ( environment) are designed to
optimize rehabilitation therapy, as illustrated in
Fig. 2. In the proposed rehabilitation therapy system
based on NMI, EEG/UCSDI/EMG based active re-
habilitation robot is used for inspiring the active par-
ticipation of the patients. Virtual Reality based game
with visual/auditory /force/haptic feedback is used
to enhance cognitive involvement, motivation and
immersion of post-stroke patients during the process
of rehabilitation exercise.

1) For the output ( motor control) pathway .
The electrophysiological signal generated by motor
imagery of human brain is detected as EEG signal
for reading patient’ s “motor-mind”. The *“ motor-
mind” is then recognized by analyzing and decoding
the motor related EEG signals. Finally, the motor
command is sent to control the rehabilitation robot
and virtual environment for impaired limb rehabilita-
tion training of the patient. Unfortunately, due to the
partly shielding effect of the skull and low spatial
resolution of EEG, it becomes a grand challenge to
precisely measure and decode the movement-related
EEG signals caused by motor imagery "**’. One
possible solution is utilizing USCDI technology "**
which can detect neuro-signals of functional part on

lesion, and EMG together with EEG to recognize
complex motor commands of human brain. For the
post-stroke patients with limb seriously paralyzed, i.
e. can hardly move autonomously, the motor and
neural function will degenerate if do nothing in a
long time according to the theory of neurological re-
habilitation. In this case, rehabilitation exercises
based on EEG/USCDI/EMG is especially suitable
for activating the muscles and nerves of the para-
lyzed limbs and reconstructing the motor control
function in cortex. For the paralyzed limb can partly
autonomously move case, the interaction with robot
based on EEG/USCDI/EMG can inspire the active
participation, motivation and immersion of the pa-
tient, which are crucial for recovery outcome. So the
post-stroke patient can input motor commands to the
robot for assisting desired exercises such as flexion-
extension of elbow, stepping, performing haptic ma-
nipulations, i.e. space exploring, grabbing an egg,
holding a cup of water, etc.

2) For the input (sensory perception) pathway
of human nervous system; Re-learning of the nervous
system is one of basic mechanisms for motor function
recover after stroke, by that undamaged neurons will
then take over the functionality of the damaged neu-
rons '''. The effect feedback of the interaction with
environment is very important for the re-learning of
the nervous system to regain coordinated motor con-
trol function just like the error back propagation for
adjusting the weights of the artificial neural networks
(ANN). The motor function recover is not only at-
tributed to the physical intervention in training
process but also to the stimulation of mental activity

] Patient’ s motivation and immer-

of the patient '
sion in the rehabilitation training can be achieved by
means of multi-sensation information feedback such
as visual/auditory/force/haptic/vibrant stimulation,
which are crucial for optimizing recovery outcome.
Visual/auditory/force/haptic/vibrant sensations gen-
erated during the process of interaction with virtual
environment of post-stroke patient through rehabilita-

tion robot are presented to the patient. The force/hap-
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tic sensations of interaction with VR can be recon-
structed by back-drivable robot and force/haptic de-
vices such as force feedback data glove. Vibrant feel-
ing in playing virtual game can be presented by a vi-
bratile motor array device. The patient’ s motivation
is fundamental and can be improved by assigning a
video feedback game to the therapy that will make the
rehabilitation training become more attractive and in-

2] Tt is important to note that efferent

teresting |
process (motor control) and afferent process ( senso-
ry perception) are not independent. On the one hand,
an efferent action (motor control) in the human neu-
ron system can be triggered by an afferent event
( sensory perception ) during process of interaction
with the robot (environment). On the other hand, the
afferent activity (sensory perception) can be used to
modify the efferent action (motor control) to interact
with the robot (environment) , i.e. to alter the veloci-
ty of limb motor.

Implementing such a kind of rehabilitation robot
system depends on the advancements of three funda-
mental technologies, the first one is the noninvasive
precise control information extraction technology from
neural signals, as conventional noninvasive neural
signal decoding methods are compromised with limit-
ed spatial resolution of EEG/EMG; the second one is
the realistic sensation feedback technology, how the
perception feedback inputs into the brain and how it
promotes neuromuscular function recovery remains an
open question; the last one is the coordinated control
technology for both the rehabilitation robot and the
patient, it is still not clear how to develop effective
control methods that simultaneously exercise the para-
lyzed limb by the robot and the central nervous sys-
tem of patients. In summary, there are following sev-
eral fundamental problems in developing such a kind

of rehabilitation robot system.

3 Fundamental problems in rehabilitation ro-
bots based on neuro-machine interaction

3.1 Extract control information from neural signals

In the rehabilitation robot based on neuro-ma-

chine interface, the commands for the rehabilitation
robot control should be extracted from the neural sig-
nals firstly. Recent researches on such a task mainly
focus on the following three progressive directions:

1) Pattern recognition based approaches:

EEG and EMG are widely used non-invasive
NMI due to their low expense and high temporal res-
olution. The EEG/EMG data acquisition is followed
by a pre-processing stage which attenuates the arti-
facts and noises present in the recorded signal, to
enhance the relevant information. The subsequent
feature extraction stage is responsible for forming
discriminative set of features in the form of frequen-

) temporal patterns *' | time-frequen-

33]
, Or spa-

cy patterns
) autoregressive models '
[34-35

cy patterns
tial patterns ! for predefined imagined or normal
muscle-based motion performed. The features extrac-
ted are used to train a classifier to decode the users”
intent and subsequently translate the features into a
set of output commands for operating the rehabilita-
tion robot. Decades of research in EEG/EMG pattern
recognition have provided frameworks that achieve
high classification accuracies (>95% ) on a few pre-
defined motions ( >4 classes for EEG, and >10 clas-
ses for EMG) ' 1750381

However, there are several drawbacks for the
pattern recognition based approaches applied to the
rehabilitation robot system based on NMI '* First,
such a kind of approaches can only provide limited
number of control commands with the predefined dis-
crete motion classes. For example, Most of the BClIs
that studied movement-related features use brain sig-
nals during movement of different body parts such as
right hand, left hand, foot, and tongue 0] Second,
the control, exact as it might be, is still sequential,
with the possibility of controlling only one motion at
a time, apart from few exceptions of systems that
were recently shown in laboratory settings to be able
to activate two classes concurrently. Therefore, the
pattern recognition systems may not be able to pro-
vide a natural way for manipulating the rehabilitation

robots 1.
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In addition to the above limitations of pattern
recognition based control, there are several problems
in translating the promising results obtained with
these systems in laboratory settings to practical reha-
bilitation robot systems. One factor is the inherent
non-stationarity in a single recording session of
EEG/EMG signals, which tends to deteriorate clas-
sification performance with the conventional pattern

recognition approaches '**

. For example, during a
session when the BCI user performing motor imagery
for training and testing, they are also subject to vari-
ations from many sources, for instance changes in
attention and motivation, changes in impedance
when electrodes get loose, eye blinking and move-
ment, swallowing, teeth crunching and etc. Such
changes may introduce strong non-task related activi-
ties into user’ s background activity, e.g., the elec-
tro-oculogram ( EOG) artifacts due to the eye move-
ment affecting the recordings from the frontal lobe,
and the a-activity due to changes in the vigilance af-
fecting the recordings from the occipital lobe. Other
factor is the between-session non-stationarity '**'
where the training trials and testing trials may be re-
corded in different sessions such as on different
days, employing different neurofeedbacks, experi-
mental protocols and so on. The combined action of
these factors leads to the practical inapplicability of
the pattern recognition control systems developed so
far '*'. In this respect, there is an increasing the at-
tention in reducing the impact of the above factors of
influence '**.

2) Movement kinematics decoding based ap-
proaches

The pattern recognition based control is usually
sequential and requires on/off mode of operation (a
class is either active or non-active ). Natural move-
ments are very different from these approaches since
they are based on the simultaneous and proportional

control of multiple DoFs '*"

. In order to provide
continuous control with multiple DoFs for the robot,
it is desired to directly decode the movement kine-

matics such as the velocity, direction, trajectory and

so on from the neural signals. Recent findings show
the neural activity using invasive intracortical local
field potentials over Electrocorticography ( ECoG)
to decode movement directions and continuous

51 'ECoG is an invasive tech-

movement trajectories
nique where grids of electrodes are implanted and
summed currents over a volume of tissue are recor-
ded as signals. However, it is impossible and unsuit-
able for patients only having motor disorder to accept

2] The noninvasive

this kind of invasive techniques
electrophysiological detecting modalities such as
EEG and EMG are much safer and cost lower. Nev-
ertheless, it is not clear whether the motor kinemat-
ics information is present in the non-invasive EEG/
EMG. In fact, EEG signals were believed to lack
sufficient signal-to-noise ratio and bandwidth to en-
code detailed movement kinematics '*’. This as-
sumption has been challenged in recent years genera-

47

ting a vivid discussion in the field "**"'. Using low
frequency EEG, reconstruction of hand movement

profiles have been reported (e.g., position and ve-

D [48-49] [50-52] )

locity profiles in 2 and 3D workspaces
These results indicate that detailed limb kinematic in-
formation could be present in the low frequency
components of EEG, indicating the possibility of
continuous decoding in a noninvasive manner.
However, the performance of existing such a
type of approaches is still far from an acceptable
one. Besides, there are three main basic problems in
non-invasive NMI for movement kinematics deco-
ding. First, it is difficult to understand the underly-
ing neurophysiology, due to lack of generic and con-
sistent information regarding correlates of movement
parameter in EEG/EMG. Second, it should perform
proper NMI experimental design since tracking MI
parameters is difficult, and restrict artifacts, such as
imposing eye movement and muscle activation re-
strictions and so on. Third, it is necessary to investi-
gate the impact of decoding error on the rehabilita-
tion robot system based on NMI, attributing to the
inter-relation between direction, speed and force.

3) Two-way communication based approaches:
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Many simple tasks still prove difficult even with
today’ s very advanced rehabilitation robots because
no sensory signals travel from the rehabilitation robot
back to the brain. Amputees have to consciously di-
rect every discrete movement of the robot, relying
on what their eyes see for feedback rather than on
their natural sense of proprioception ****/. This level
of effort results in clumsy and slow movements that
leave people exhausted by the concentration and time
needed to accomplish such tasks as reaching a target.
A critical goal, then, is to engineer an interface be-
tween the nervous system and the robot that allows
two-way communication of both motor and sensory

information ***

. Such a two-way communication
technique would permit the development of rehabili-
tation robots that can be controlled by intuitive
thought and that can feel the presence of limb.

More and more researchers are now pursuing this
objective. Cullen and Smith have developed a kind of

“adapter cord” that translates nerve impulses into elec-

Ultrasound
transducer array

trical signals, using laboratory-grown nerve fibers and
electricity-conducting polymers "***'. Such a kind of a-
dapter plug have been built in rats, if all goes well,
they will eventually use such biohybrid bridges to link
up the severed peripheral nerves in a human being in
such a way that a prosthetic device can directly receive
motor control instruction from the brain, and can in-
versely transmit the force/haptic sensory information
back to the brain so that the prosthetic device feels like

53-55]

a natural hand ' . However, such an invasive direct
two-way communication interface has to undergo a sur-
gery to setup it in the paralyzed limb. In addition, this
technique is still in its infancy and very expensive,
which may not be acceptable for patients only having
motor disorder. Therefore, it is a great challenge to de-
velop a noninvasive interface that can provide the two-
way communication. To create such a NMI, the nonin-
vasive technology that can detect neurophysiological
signals in the two-way communication should be devel-

oped first.

Imaging reconstruction

.
. VA /’\VAM .
V V

Fig. 3 Measure electroneurographic signal in high spatial and temporal resolution

by ultrasound current source density imaging ( UCSDI)

Recently hybrid imaging modalities combing
ultrasound scanning and electrical current density
imaging through the acousto-electric ( AE) effect to
achieve high resolution in both space and time do-
mains, namely acoustoelectric tomography ( AET)
and ultrasound current source density imaging

( UCSDI ), have attracted considerable attent-

ions [25, 26, 56-62]

. Those noninvasive imaging modali-
ties have the potential to provide electrophysiologi-
cal functional maps with ultrasonic resolution. Initial
experiments under controlled conditions indicate that
UCSDI has potential of achieving sub-millimeter
spatial resolution and decent sensitivity of measuring

current densities (2~4 mA/cm?) " **' Such a
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kind of hybrid imaging modalities can be use to im-
age current flowing in lobster nerve cord with physi-

o
191 electrocar-

ologically realistic current densities
dio-pulse propagation process, cardiac activation of
a rabbit heart *") | the local potential field and weak
current flowing in volume conductor ', This kind
of noninvasive nature imaging measures the neuro-
physiological signal directly and has high resolution
in both space and time domains ( millimeter-micro-

27 50 it is desirable for

second scale even better)
detecting the electrophysiological signals for rehabil-
itation robot control, and is suitable for imaging the
neurophysiological processes how the neuron system
control musculoskeletal motor performing a action
as well as how the multi-sensorial signals are back-
propagated through neural paths to the brain. As il-
lustrated in Fig. 2 and Fig. 3, the limb motor relat-
ed electrophysiological signals in the peripheral
nerve is detected using this UCSDI and then sent to
a signal processing unit which convert motor related
neural signals into commands of robot to control the
robot performing rehabilitation therapy. With UCS-
DI, it is now able to record the signals of the nerves
going in one direction ( down the limb) and to
stimulate the nerves going in the other direction ( to-
ward the brain) .

One major challenge for using UCSDI to ima-
ging electrophysiological activity of the brain and de-
tect the neurophysiological signal in the motor cortex
is that the skull which envelops the encephalon fully
will block the ultrasound conducting into the cortex,
so the AE signal in UCSDI can’t gain for detecting
motor cortex electrophysiological signal. Fortunate-
ly, the motor related electrophysiological signal in
peripheral nerve can be detected by using UCSDI.
Similar to the skull, the bone will block the propaga-
tion of ultrasound, generating echo in the interface
between muscle and bone that will also be a chal-
lenge for detecting the electrophysiological signal in
peripheral nerve. Possible solution is that scan from
one side and then from the opposite side or arrange

two phased ultrasound arrays in the two opposite

sides to improve frame speed. The influence of echo
can be comparatively easily eliminated because the
echo generates after the AE signal so they can be

‘2] Further researches will

separated in time domain
be needed for fitting UCSDI to detect motor related
electrophysiological signal for rehabilitation robot
control and image the neurophysiological process
how the neuron system control musculoskeletal mo-
tor.

Although the same as imaging outputted neural
signal in technology, imaging/detecting how the
sensorial electrophysiological signals of limb are acti-
vated, back-propagated and then perceived by the
brain is more important for robot-assisted active re-
habilitation due to activation of neural pathway and
re-learning of neuron system by sensorial feedback
are essential for regaining coordinated motor control
function of patient. This will be discussed in the fol-

lowing section.

3.2 How the perception feedback affects the neu-

romuscular rehabilitation

Although robot-assisted rehabilitation training
has established itself an important rehabilitation ther-
apy method for patients suffering motor dysfunction
following stroke ““**) how the mechanical and
multi-sensation feedback affect the neuromuscular re-
covery is still an important and interesting question
need to be solved in neuroengineering. A variety of
therapeutic approaches are used in rehabilitation of
post-stroke patients, however, the evidence basis of
these interventions is weak and a physiological mod-
el of their effect is often lacking. The recent ad-
vancements show that rehabilitation training mainly
take effect in three aspects:

1) Stimulates and exercises the neuromuscular,
for keeping the function, preventing a complication
of the neuromuscular characterized by tremor. Repet-
itive, passive-active movement training can improve
limb motor function by preventing neuromuscular at-

[ 66-67

rophy, spasm, quivering ! Positive effects in

the post-acute phase have been reported with func-
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tional exercises for the arm [*’

and training of move-
ment components . Thus, there exists a rationale
for the use of passive movements, not only to pre-
vent local tissue complications but also to improve
motor function after stroke for those patients who
cannot actively achieve functional movements of the
paretic limb. This problem seems straightforward due
to “exercise makes body stronger” has propagan-
dized deep into people. However, by what neurobio-
logical mechanism the mechanical stimulation pro-
motes the neuromuscular recovery, how the training
changes the anisotropic muscle motor into regular
motor are remain open questions. Optimizing the
training according to neurobiological mechanism to
promote recovery of neuromuscular system is still a
challenge in rehabilitation engineering.

2) Activates the neural pathway by motor con-
trol output and sensorial feedback input. The number
of neurons and the strength of the neural networks
involved in a task are directly related to intensity and

%) Sensory information feed-

frequency of the task
back is regarded as crucial in motor learning and re-
covery post-stroke and regained sensory function is
considered a positive prognostic indicator of therapy

outcome .

This neural pathway activation by
“use-dependent plasticity” is an important factor to
highlight in the rehabilitation therapy '™'. Conflict-
ing results exist with regards to the effects of superfi-
cial sensory stimulation in the rehabilitation of post-

stroke patients 7'

. However, studies in healthy
subjects and post-stroke patients have suggested that
proprioceptive inflow can lead to improvements in

3-T1 .
™71 However, the evi-

limb motor control function
dence basis of these activations is weak and a physi-
ological process of their effect is often lacking. An
invivo imaging of the electrophysiology signal propa-
gation in neural system may shed light on unlocking
the activation physiological process.

3) Inspires the re-learning of neuron system
through neural plasticity by the execution of coordi-
nated movements and effect perception feedback.

The adult brain is capable of reorganizing itself after

suffering a stroke because the healthy parts of the
brain learn and take over the functions previously
carried out by the damaged regions of the brain "',
Increased activity in primary motor cortex imaged
by fMRI has been found during recovery from

stroke [ ™

. The brain’ s reorganizing capability is
commonly known as neuro-plasticity '™, which can
be seen as the moving of the position of a given
function from one location to another in the brain
through repeated learning. Generally, the motor dis-
order following stroke mainly caused by lesions in
nervous system, therefore, the essential effect of
neurorehabilitation training is to inspire the re-learn-
ing of the nervous system through neural plasticity
by the execution of motor tasks and effect feedback
by perception. Just like training an artificial neural
network ( ANN) , the motor control output ( training
data set in ANN) and perception feedback of the
effect (error feedback in ANN) take key roles in re-
learning of the nervous system. The re-learning of
the nervous system for motor function recovery is
just a training process that the nervous system ac-
cording to the effect feedbacks to adjust and reorgan-
ize the neuro-networks physiologically and function-
ally by neuro-plasticity for correcting the motor con-
trol output to finish a desired movement, action, or
manipulation. Clinical experimental studies during
the last decade show that the outcome of rehabilita-
tion training fluctuates greatly depending on subjects
I A fundamental question rises naturally : how and
by what neurobiological mechanism the perception
feedback of motor control effect ( that like error back
propagation algorithm for adjusting the weights of
ANN) affects the re-learning of the neuron system?
Conflicting opinions exist due to lack of sufficient
evidences. Some researchers persist assisting strate-
gies, conversely, some agree to challenge strategies
for providing mechanical and sensorial feedback to
patient for promoting motor control function recover-
y 18 Therefore, it is still a grand challenge to
provide effective and optimized perception feedback

to promote the re-learning of the neuron system for
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motor control function recovery.

3.3 Coordinated control for both the rehabilita-

tion robot and the patient

As mention above, the quality and amount of
exercises are key important for motor function recov-
ery. Although the optimal rehabilitation training is
still an open question, stable and smooth control
method is needed for robot assisting post-stroke pa-
tient indoing designed exercise rightly and success-
fully. Trajectory control, kinetics based control in-
cluding impedance control, force-position hybrid
control, EEG/EMG-based autonomous control, per-
formance-based control, safety strategies, etc., have
been proposed and applied in all kinds of rehabilita-
tion robot ¥ However, the essential mechanism
of neurorehabilitation training is to favor the re-
learning of the central nervous system of patient
through neural plasticity by the execution of coordi-
nated movements and effect feedback by perception.
Unfortunately, the control methods discussed above
focused on exercising the paralyzed limb, rather than
training the central nervous system, that limits the
outcome of rehabilitation training.

As illustrated in Fig. 4, the proposed rehabilita-
tion robot system based on Neuro-Machine Interac-
tion utilizes motor related EEG, UCSDI, EMG to
control robot assisting paralyzed limb in performing
designed task, and provides visual, auditory, force,
haptic information to the patient, in such way to pro-
mote the re-learning of the nervous system to regain
motor control function. A coordination control meth-
od is needed for this rehabilitation robot based on
Neuro-Machine Interaction providing safe, smooth,
predesigned exercises such as moments, actions, and
manipulations with realistic feeling feedbacks to the
patient for motor control function reconstruction. To
provide flexible, versatile manipulation assistance,
not only sophisticated, multiple degrees of freedom
robotic mechanisms are needed, but also miniature

measure devices, which measure angle, velocity,

force/torque, etc. of each actuator for state feedback

contro]# &/

. Although the posture trackers, data
glove and force/torque sensors are available, it is
still a challenge to integrate the distributed measure

19U Implemen-

devices to the robotic mechanisms
tation of visual, auditory feedbacks are easy to com-
plete, but high spatial resolution forcefeedback and
realistic haptic sensation are still difficult to recon-
struct and input into person. Patient’ s active force/
torque can be estimated through musculoskeletal
model using video information of limb movement,
but it is very difficult to measure the active force/
torque directly and accurately, this bring uncertainty
for coordination control of the rehabilitation robot.
The development of neuro-machine interface tech-
nology in the recent years make it possible to recog-
nize 15~20 actions of up-limb and hand using EEG
together with EMG, but the decoding rate is limited
to 4 actions per second ‘). Assuming the idea deco-
ding output is a continuous signal, this low frequen-
cy decoding is equivalent to low frequency sampling
for the continuous signal. Commonly, human’ s
electrophysiological signals are in the range of 3 ~
200 Hz, so this low frequency decoding will result
in serious frequency overlapping, which imposes
great difficulty to the robot control. In addition,
there is sill no ideal recognition algorithm at present,
which is able to recognize all kinetics information for
all possible interactions with a limited training set of
EEG and EMG signals '**'. The nonlinearity of the
kinetics of human limb especially paralyzed limb is
another important problem need to be considered for

1 1Y, Current studies indi-

rehabilitation robot contro
cate that there are several large nonlinearities exist in
the relationship between neural activity and joint
torque. These nonlinearities include the nonlinear
transformation from joint angles to muscle lengths,
the transformation from forces to torques, and

the nonlinearities in the generation of muscle

force 7
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Fig. 4 Scheme of coordinated control for both the rehabilitation robot and the patient

Owing to the difficulties of kinetics state meas-
urement, multi-sensation feedback, patient’ s active
kinetics measurement, low decoding rate for neural
control information, safety guarantee, together with
the multiple DOFs, strong coupling, nonlinearity na-
ture of limb’ s kinetics, it is a grand challenge to co-
ordinately control such a kind of rehabilitation robot
based on Neuro-Machine Interaction for providing
safe, smooth, pre-designed exercises, which let pa-
tient actively interact with virtual environment related
to walk, hand actions, daily tasks, playing games
and haptic exploring. Fully overcoming this difficulty
may depend on the solving of the fundamental prob-
lems in neuroengineering such as how the mind con-
trol limb motor through the neuro-musculo-skeletal
system, how the perceptionis inputted as electroneu-
rographic signals and perceived by the human brain
through the neural system, and how the active reha-
bilitation training promote the motor function recover-
y of post-stroke patient in neurophysiology. On the
other hand, the advancements of neuro-machine bilat-
eral interaction technology will be able to solve some

fundamental problems.
4 Concluding remarks

The study results in rehabilitation therapy of

post-stroke patients show that the outcome of the re-
habilitation training mainly depends on three aspects :
1) the active participation of the patient; 2) the a-
mount and quality of physical activity; 3) the cogni-
tive involvement of the patient. The rehabilitation ro-
bot based on Neuro-Machine Interaction has been
currently proposed, which measures and decodes
neural signals to control robot assisting paralyzed
limb in performing designed tasks and provides real-
istic sensation feedback of the interaction effects to
the patient simultaneously. It will greatly enhance
post-stroke patient recovery from motor dysfunction.
For developing such a kind of rehabilitation robot
based on Neuro-Machine Interaction, there are some
fundamental problems unsolved as follows: how to
precisely extract limb movement imagery information
from neural signals measured noninvasively for robot
control, how the bilateral interaction especially per-
ception feedback affects the neuromuscular rehabili-
tation, and how to optimize the coordination control
of both the rehabilitation robot and the patient.
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