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Abstract:Based on the raw data of spaceborne dispersive and interferometry imaging spectrometer, a set of quality evaluation

metrics for compressed hyperspectral data is initially established in this paper. These quality evaluation metrics, which consist of

four aspects including compression statistical distortion, sensor performance evaluation, data application performance and image

quality, are suited to the comprehensive and systematical analysis of the impact of lossy compression in spaceborne hyperspectral

remote sensing data quality. Furthermore, the evaluation results would be helpful to the selection and optimization of satellite data

compression scheme.
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1 Introduction

With the progress in imaging spectrometer, its
spatial and spectral resolution increase rapidly, resul-
ting in the boost of image size acquired by the equip-
ment. Limited by the downlink bandwidth, the hy-
perspectral data acquired by the spaceborne high res-
olution imaging spectrometer is usually lossily com-
pressed onboard before data transmission. However,
when dealing with the lossy data, it is important to
define quality metrics or distortion measures, which
are able to properly and comprehensively quantify
the influence of information loss due to compression
on not only the distortion but also on the hyperspec-
tral image quality, the end-user applications, and the
on-orbit sensor monitoring. These metrics can be
used to ensure that no critical information has been
lost during the compression process, and that the sci-
entific value of the original data is preserved .
Therefore, to build a thorough quality metric set is
also of a growing interest for the current high resolu-
tion spaceborne hyperspectral remote sensing (RS)

technology.

Originally, the quality evaluation of lossy com-
pressed hyperspectral data takes the advantage of the
assessment methods of ordinary still images, such as
peak signal noise ratio (PSNR) and mean square er-
ror (MSE) , which compare the distortion of decom-
pressed image with its original image '''. By further
research, some other methods emerge, such as the
method of spectral information divergence (SID)'" |
spectral angle (SA) "', relative spectral quadratic
error (RQE)'? and others. Generally speaking,
most of the current quality criteria for the lossy com-
pression of spaceborne hyperspectral data just meas-
ure the data change between the original data and the
compressed data from the statistical aspect, which
cannot thoroughly and systematically reflect the lossy
compression’ s influence to the quality of hyperspec-
tral data.

In this paper, based on the current compression-
evaluation methods, the accomplishment of the hy-
perspectral data application, and the on-orbit data
quality monitoring, the quality analysis extent for
hyperspectral data compression is extended. Some

typical criteria and algorithms are chosen from four
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aspects including data statistics distortion, sensor
performance, data application effect, and image
quality. A set of quality evaluation metrics for lossy
compressed spaceborne hyperspectral data is built,
which is suited to the thorough and systematical a-
nalysis of the influence of information loss caused by
compression upon the spaceborne hyperspectral data
quality and its application results. The metrics are al-
so able to provide support to the option and optimi-
zation of the satellite hyperspectral data compression

solution.
2 The principle of the metrics

Compared with the traditional single or multiple
spectral optical RS image, hyperspectral data is a
three dimensional (3-D) image cube composed by
intensity images corresponding to each spectrum. On
the one hand, the hyperspectral data describes the
spatial information of surface feature under each
spectrum in different images. On the other hand, the
pixel of the same location in these images forms a
nearly continuous spectral curve. On the aspect of
RS application, the affluent spatial and spectral in-
formation contained in hyperspectral data have great
potential in accurate feature classification and target
recognition. Therefore, as to the analysis and evalua-
tion of the hyperspectral data’ s compression quality ,
the analysis of the influence of information loss is
necessary to consider the data applications, apart
from the traditional comparison methods between o-
riginal data and decompressed data. Secondly, since
the quality and the application effect of the acquired
data depend on the status and the performance of RS
sensor, on-orbit sensor performance monitoring,
which always has been a significant part of the quali-
ty analysis & control of the on-orbit satellite RS da-
ta, is also an integral aspect in building the quality
evaluation metric set for the compressed spaceborne
hyperspectral data.

To establish the quality metric set should follow
the principle of objectivity, sensitivity and systema-

tism.

Objectivity ; introduces data quality related met-
ric criteria which could be calculated and measured
quantitatively with mathematic model and algo-
rithms.

Sensitivity; selects the metric criteria which
could show sensitive reflection by the impact of the
compression algorithm or the change of compressed
parameter.

Systematism: from different angle or level,
thoroughly and systematically reflects the influence
of information loss from data compression upon hy-
perspectral data and application.

Based on the above principle and according to
the hyperspectral satellite data’ s feature and the ap-
plication requirements, the criteria option and the
construction of the quality evaluation metric set for
the compression of spaceborne hyperspectral data
will be illustrated in this paper comprehensively con-
sidering data statistical distortion, sensor perform-

ance, data application effect and image quality.
3 The evaluation of data statistical distortion

In the aspect of data statistical distortion, the
current quality evaluation methods could be used to
the compressed hyperspectral data. The difference
between original data and decompressed data is ana-

lyzed from spatial dimension and spectral dimension.
3.1 The distortion of spatial dimension

As to the distortion of spatial dimension, PSNR
is the most common criterion. However, PSNR just
analyzes the difference between each pixel, there-
fore, cannot reflect the structural information change
among each image. Zhou Wang etc'’’. come up with
the metric criterion of structural similarity image
measurement ( SSIM ) , which could effectively de-
scribe the structural change between two images and
maintain the consistency with the visual perception
of human observers' "’

3.1.1 Peak signal noise ratio (PSNR)
PSNR takes the advantage of MSE to describe

the overall gray scale difference between the original
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image and the decompressed image. The definition is

shown below :
LZ
PSNR =10 x lg —— 1
& MSE (1)
where L indicates the quantity level of one im-
age. The larger the PSNR is,

of the decompressed image will be. When one image

the less the distortion

is losslessly compressed, PSNR is infinite.

3.1.2 Structral similarity image measurement (SSIM)
SSIM includes the brightness, the contrast and

the structural information of original image and de-

compressed image. The definition is shown below ;

+C) 20 +C
SSIM = —— 0’”’? ) > 23 (2)
(1, ot C)(o, =+ o, t G,)

where, u, and u, respectively determine the

mean gray scale of the original image and the de-

compressed image, o, o, and o, respectively illus-

trate the standard deviation and the correlation coef-
ficient of the original and the decompressed image’ s
gray level, C,.C, are insignificant positive number
to avoid the occurrence of the denominator being ze-
ro or too small, resulting in the unstable phenome-
non. SSIM ranges from O to 1, the larger the value,
the more similarity the two images share. If one im-

age is losslessly compressed, SSIM equals 1.
3.2 The distortion of spectral dimension

The common spectral distortion metrics for hy-

[5]

perspectral data include spectral angle, spectral

information divergence, spectral similarity and rela-
tive spectral quadratic error.
3.2.1 Spectral angle (SA)

SA defines the angle between two spectral vec-
tors, determining the similarity between two spec-

trums, the formula is shown below .
k’ ~
Ef(x’yv/\k )f(x ’y9/\k ):I
SA,, = cos”' - i - (3)
JZ (f(xsy’Ak>>2 2 (f(x9ysAk)>2
k=1 k=1

where f(x,y,A,) and ]}(x,y,)\k) respectively
denote the pixel value of the original hyperspectral

data and the decompressed data in the location of (x,

y)and under the spectrum A,. The smaller the angle,
the more similarity the two spectrums share. Some

researches

use maximum spectral angle ( MSA)
to represent the spectrum similarity between the hy-
perspectral data before and after the compression.

However, according to the experiment we conduct,

the mean spectral angle (SA) is more sensitive upon
data compression compared with MSA. The formula

of SA is defined below :

A:MxNZZSA“) (4)

x=1y

where M and N respectively denote the number
of rows and the columns of hyperspectral image.
3.2.2 Spectral information divergence ( SID)

SID is usually used to assess the similarity a-
mong pixel spectrums. For the compressed hyper-
spectral data, the maximum spectral information di-
vergence (MSID) is frequently used to evaluate the

spectral distortion. The definition is described be-

low .
MSID = magc% pAln(f)}
Pa
. (5)
_ Sla,y,A) - f(x,y,A)
Py = R sPr = ~ R
[ f(x,y,A) 1], [ f(x,y,A) I,

Wheref(x,y,/i) and ]}(x,y,/-\) respectively re-
present the original data vector and the decompressed
data vector.

3.2.3 Spectral similarity (SS)

SS describes the similarity two spectrums share.
For the compressed hyperspectral data, MSS ( maxi-
mum spectral similarity ) is frequently used to reflect

the spectral distortion. The definition is shown below .

MSS = max{/MSE,  + (1 - corriﬂ,)2 |
- : )

(f(x,y,A) —p) (60)

: 6.;(%}.5')

; (f(x,y,A)p) +

(n)\ - 1>6./'(x.y,g>

corr, =

where o and ,z; respectively describe the mean
spectrum of the original image and the decompressed

image.
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3.2.4 Relative spectral quadratic error (RQE)
RQE describes the spectral distortion by calcu-
lating the relative deviation of each decompressed
spectral image’ s gray level from the original spectral
image’ s mean gray level. In this paper, RQE’ s
mean pixel is used to represent spectral distortion.

The definition is below :
jZ (f(x,y,A) = f(xy,0))?
RQE,,, =~
;f(x,y,)ﬁ (7)

- 1 M N
RQE = M X Nz 2 RQE(%})

x=1y=1

4 The evaluation of sensor performance

The performance analysis for on-orbit imaging
of optical sensor includes radiometric, geometric,
spatial and spectral property '*'. Among them, the
radiometric property depicts sensor’ s ability to main-
tain the relative or absolute energy distribution of the
ground scene at the imaging moment. The geometric
property reflects sensor’ s capability to keep the rela-
tive or absolute location of the targets in one scene.
The spatial property indicates sensor’ s potentiality to
maintain the relative scales and details of the ground
targets. The spectral property represents sensor’ s ca-
pacity to restore the spectrum distribution of the tar-
gets. Since compression exerts insignificant influence
upon the geometric property, the main focus is put
upon radiometric, spatial and spectral property when
establishing the quality evaluation metrics for the

lossy compressed spaceborne hyperspectral data.
4.1 Radiometric property

SNR, the absolute radiometric calibration coef-
ficient and the radiometric resolution are the most
typical and common criteria for senor’ s radiometric
property.

4.1.1 SNR

SNR is an important analytical parameter for
optical sensor’ s radiometric resolution and detection
13]

sensitivity '"*'. During the actual operation, the SNR

of the spaceborne push-broom linear array optical

sensor is usually calculated by the column difference
method through estimating the column noise of the
image from uniform scene "'*.
4.1.2 The absolute radiometric calibration coefficient
The optical sensor’ s absolute radiometric cali-
bration coefficient includes gain (G) and bias (B)
which represents the numeric relationship between
the digital number (DN) of the sensor’s output sig-
nal and the ground feature’ s luminance (L) in sen-
sor aperture. It is the premise for the quantitative ap-

[15

plication of RS information ">/, The on-orbit abso-

lute radiometric calibration coefficient is usually cal-
culated by the reflectance based method "'*'* .
4.1.3 Radiometric resolution
The radiometric resolution determines optical

sensor’ s ability to discern the tiniest radiation differ-
ence. For the sensors ranging from the visible light
and the short-wave infrared, the radiometric resolu-
tion is always denoted as the noise equivalent lumi-
nance (NEAL), the definition is described below ;

L :(DN-B) 1 (8)
SNR G SNR

The above formula indicates that radiometric

NEAL =

resolution is calculated by the SNR and the absolute
radiometric calibration coefficient. When the varia-
tion pattern is consistent with the SNR and the abso-
lute radiometric calibration coefficient, the two fac-
tors can replace the radiometric resolution to indicate

the variation pattern.
4.2 Spatial property

The metrics for sensor’ s spatial property con-
tain the spatial resolution and the modulation transfer
function (MTF).

4.2.1 y 1l

Spatial resolution ( SR
SR reflects how well specific features can be re-
solved by the sensor. However, there is no standard
definition for SR. Ground sample distance (GSD),
MTF, ground resolvable distance ( GRD) and others
are used to represent SR. Since GSD is only associat-
ed with the sensor’ s height and CCD detector size,

GRD, which describes the recognition for the mini-
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mum distance or target size in one image, is usually
obtained with the subjective judgment, which cannot
meet the objective demands. With further experi-
ments, the MTF value at Nyquist frequency shows
regularity under different compression rate, which
could indicate the compression impact upon sensor’ s
spatial property.

4.2.2 Modulation Transfer Function (MTF)

MTF defines the variation of the optical sensor’s
contrast modulation under different spatial frequency.
By linking the contrast and the resolution together, it
could indicate the contrast modulation loss and the sig-
nal spreading of the sensor’ s imaging of the ground
target under each spatial frequency. In order to guaran-
tee the precision of MTF, an optimized knife-edge
fLZOJ

method in Ref ™. is recommended in this paper.

4.3 Spectral property

The common parameter to depict the hyperspec-
tral imager’ s spectral property is the central wave-
length and the full width half maximum ( FWHM).
In the hyperspectral data application, the variation of
the central wavelength and the FWHM directly affect
the SRF’ s ( spectral response function) retrieval pre-
cision, which finally influence the accuracy and the
accomplishment of the quantitative application such
as classification, identification and others.

To analyze the compression impact upon the
sensor’ s spectral property, the method in Ref. '*" is
recommended to calculate the central wavelength’ s
variation ( AN) and the FWHM’ s variation ( AF-
WHM) of the original hyperspectral data and the de-

compressed hyperspectral data.
5 The evaluation of data application effect

The effect of data application indicates the ap-
plication value of RS data, therefore, it is necessary
to combine the data compression’ s quality evalua-
tion and the data’ s application effect. In the quality
evaluation metric set we build for the compressed
hyperspectral data, two criteria of spatial interpret-

ability and land surface reflectance are selected for

the assessment of data application effect, based on
the application feature of the high resolution and

high spectral data.
5.1 Spatial interpretability

The evaluation of hyperspectral image’ s spatial
interpretability could refer to the national image in-
terpretability rate standard ( NIIRS). By taking the
advantage of the general image quality equation
(GIQE) , the quantitative interpretability can be cal-
22-23]

culated '

5.2 Land surface reflectance '**

The spectral reflectance of land surface is the
foundation for the application of the quantified RS in-
formation, which is used to describe and unveil the
essential of the ground target. The method in Ref'*’.
is recommended in this paper to retrieve reflectance in

the original and the compressed hyperspectral image.
6 The evaluation of image quality

Image quality determines the effect of image ap-
plications and the performance of imaging sensors.
By using an array of physical parameter, which
could represent the image feature, the evaluation of
image quality is realized. The common metric crite-
ria for image quality evaluation include luminance,
variance, contrast, spatial frequency, skewness,
definition, kurtosis and etc. To guarantee the analy-
sis be objective, systematic and comprehensive,
those criteria which show more sensitivity to com-
pression should be selected with high priority when

constructing the metrics.
6.1 Luminance, variance, contrast

The mean gray level of all pixels in one image de-
fines the luminance, illustrating the average reflection.

The variance, o describes the deviation level of
each pixel’s gray level from the mean gray level, re-
flecting the affluence of information in one image.

The contrast C depicts the recognition of target
in one image, usually defined by the ratio of image

variance to luminance.
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6.2 Spatial frequency and skewness

Spatial frequency ( SF) represents the distribu-
tion of gray level in one image under different spatial

frequency. Below is the definition:
SF(A) = /(R) +(C)°

f MXN;) ; [f<x9y’Ak) _f<x,y - la/\k)] : (9)

N-1 M-1

M><NZ Y fay ) —flx -

y=0 x=1

C; l’y,)‘k)] :

where M and N respectively indicate the number
of columns and rows of one image in spectrum A,.
Skewness describes the deviation of the histogram of
one image from the average symmetric shape, repre-
senting the radiometric accuracy of one image. The
definition is below :

i-w) > X p.
K=Y ("“Lp (10)
where i denotes the gray level of an image, p, re-

presents the probability of pixel whose gray level is i.
6.3 Definition

Definition determines the variance of edge’ s
sharpness in an image, reflecting tiny details the im-
age contains. There is numerous ways to calculate

such as the method of
[27] [28]

the definition of an image,

gradient function'* | point sharpness'*"’ | reblur
and others. By further analysis, we recommend pomt
sharpness method for its more sensitivity. The ex-
pression of point sharpness based definition algo-

rithm is shown below .
MxN

ZZ

i=1 a=

D—i 11
M x N (11)

where M and N respectively indicate the number

of columns and rows of one image f, df represents
the gray scale difference of a pixel’ s eight-neighbor
in one image, and dx represents the distance incre-

ment in each pixel.
7 Evaluation results and analysis

Since most of the current spaceborne hyper-

spectral imagers are the dispersion and the interfer-

ence type, two types of hyperspectral data are used
with a large number of experiments on the establish-
ment of metric set. One is UAV-HSI data ( GSD =
0.7m, 400nm-900nm spectrum range, 128 bands,
dispersion type) and the other one is HJ1 A-HSI da-
ta (GSD = 100m, 400nm-900nm spectrum range,
128 bands,

data are shown in illustration 1. For the bulk of the

interference type ). Some experiment

section, we take JPEG2000, one of the most com-
mon compression methods for spaceborne optical
RS data, as an example to depict the metric set we
build.

© O

Fig. 1 Experiment data: (a) data 1 the UAV-HSI
uniform scene image (b) data 2 the UAV-HSI image
(c) data 3 the HJ1A-HSI interferogram (d) data
4 the HJ1A-HSI image from data 3.

Table 1 shows the distortion of the restored im-
age from data 2
JPEG2000. It indicates that with the increase of com-
pression rate, PSNR, RQE and MSA rise and SSIM
the variance of MSA, MSID
and MSS do not show regularity. On the basis of
PSNR, SSIM, RQE and SA

should be included in the metric set to analyze the

and 4 in Fig. 1 compressed by the

decrease. However,

sensitivity principle,

statistical distortion of the compressed hyperspectral
data.
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Table 1 The distortion analysis for the compressed
data 2 & data 4.

Criteria | Datasets 4.1 8.1 10.1 12.1 16:1
2 47.7 46.1 45.5 45.0  44.7
PSNR
4 47.2 37.9 36.7 36.2 34.8
2 0.955 0.941 0.942 0.931 0.926
SSIM
4 0.992 0.933 0.909 0.899 0.86
2 0.06 0.09 0.09 0.09 0.10
MSA
4 1.07 1.05 1.06 1.11  1.20
2 0.293 0.295 0.294 0.291 0.29
MSID
4 0.01 0.01 0.01 0.01 0.01
2 78.5 7.7 79.9 771 77.6
MSS
4 21.1 50.3 58.4 61.7 72.8
2 4.21 17.8 19.9 2586 29.6
RQE
4 12.6 3738 43.15 45.76 54.19
_ 2 0.002 0.008 0.019 0.012 0.014
SA 4 0.011  0.034 0.04 0.042 0.05
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Fig. 2 The influence of compression upon sensor’s
radiometric and spatial property by data2:
(a) SNR and (b) MTF.

Figure 2 and 3 and Table 2 and 3 demonstrate
the influence of JPEG2000 upon the sensor perform-
ance and the application effect by using UAV-HSI.
Since the previous 24 bands and the last 24 bands of
UAV-HSI data are vulnerable to the influence of
noise, MTF and NIIRS are of low accuracy and

therefore not included in the illustration.
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Fig. 3 The influence of compression upon data’s
application effect by data2:
(a) Surface reflectance and (b) NIIRS.

According to the analysis results, when the
compression rate is below 16, JPEG2000 will affect
the evaluation of SNR, absolute radiometric calibra-
tion coefficient, radiation resolution, MTF and NI-
IRS and show regular influenced trend as in Fig 2
and 3. Among them, SNR, radiation resolution,
MTF and NIIRS are the most influenced metric crite-

ria.
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Table 2 The mean percentage of the relative change of

sensor performance by data2.

Criteria 4.1 8:1 10:1 12:1 16:1
SNR 5.00 10.11  11.94 17.36 26.83
NEAL 0.82 5.81 7.31 12.65 18.55
Gain 0.075  0.177  0.221  0.240 0.272
MTF -7.87  -1042 -12.25 -13.49 -17.34
NIIRS -0.05  -0.058 -0.096 -0.141 -0.205
Reflectance | 0.005  0.006  0.007  0.007 0.007

Although the analysis results such as table 3,
show that JPEG2000 exerts little effect on the sen-
sor’ s spectral property ( central wavelength and
FWHM) , these two criteria are kept in the metric
set considering their intimate relationship with the RS
quantitative application and the comprehensiveness

of the metrics.

Table 3 The sensor’s spectral property by data2.

Criteria | origin 4.1 8:1 10.1 12:1 16:1
AN 0.98 0.96 098 097 092 0.93
AFWHM | -0.01 -0.02 -0.01 -0.02 -0.02 -0.02

Table 4 describes the influence of JPEG2000
upon the image quality by using UAV-HSI and
HJ1A-HSI data. As comparison, the influence of the
point sharpness based definition algorithm and the re-

blur definition algorithm are also shown in Table 4.

Table 4 The mean percentage of relative image

quality change for data2 & data3.

Criteria Datasets 4.1 8.1 10.1 12.1 16:.1
UAV-HSI 1.60 1.04 2.10 2.51 4.87

Contrast
HIJ1A-HSI 0.50 0.08 0.56 0.65 1.21
Spatial | yAV_HST 1.80 1.92 2.01 212 2.32

frequency
(SF) HJIA-HSI 1.54 292 3.42 3.57 4.59
UAV-HSI 391 449 491 5.66 6.12

Skewness
HI1A-HSI 2.35 3.37 7.12 9.42 14.7

Definiion | UAV-HSI -1.16 -7.35 -11.8 -13.5 -17.6
(Point sharpness)| HI1A-HSI -1.67 -6.44 -10.8 -14.8 -18.3
Definition | UAV-HSI -0.21 -0.25 -0.78 -0.98 -1.23
(Reblur) | HJIA-HSI -1.17 -2.12 -2.80 -1.07 -1.56

According to the analysis, within the 16 1
compression rate, the corresponding relative variance
than 5%.
JPEG2000 exerts tiny influence upon the contrast and

percentages are all less Therefore,,
the spatial frequency. Upon the image definition, the
influence of the point sharpness based definition al-
gorithm is more sensitive than the reblur definition
algorithm. For the interference type of hyperspectral
data, outside the 12;1 compression rate, JPEG2000
influences much upon skewness. Based on the above
analysis, we choose skewness and definition, calcu-
lated by the point sharpness based algorithm, to be
included in the metric set for the influence of com-

pression upon the image quality.
8 Conclusion

On the basis of deep analysis on the evaluation
of the compression of spaceborne hyperspectral data
and by following the principle of objectivity, sensi-
tivity and systematism, some proper metric criteria
and their corresponding algorithms are chosen. An
initial quality evaluation metric set for compressed
spaceborne hyperspectral data is built from the as-
pects of data statistical distortion, the sensor per-
formance, the data application effect and the image
quality. Table 5 shows the metric set. The data anal-
ysis for JPEG2000 and CCSDS compression schemes
indicates that the metric set is suited to the systemati-
cal analysis of the influence of compression algo-
rithm upon the quality of the hyperspectral RS satel-
lite data, and is able to provide reference to the op-
tion and the optimization of the compression algo-
rithm and compression solution for the hyperspectral

data.
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Table 5 Quality Evaluation Metric set for the Compressed Spaceborne Hyperspectral Data.

Image Distortion

Data Statistical Distortion

Peak Signal Noise Rate( PSNR)
Structure Similarity Image
Measurement( SSIM )

Mean Spectral Angle( SA)

Space Property

Quality Evaluation Spectral Distortion . i
. Relative Spectral Quadratic Error( RQE)
Metric set - -
o Signal Noise Rate( SNR)
for the Compressed Radiation Property ) ) o .
Absolute Radiometric Calibration Coefficient
Hyperspectral Data Sensor Performance

MTF

Spectrum Property

Central Wavelength FWHM

Data Application Effect

NIIRS Surface Reflectance

Image Quality

Skewness Definition
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